Overcoming Anchoring Bias: The Potential of AI and XAI-based Decision Support
- URL: http://arxiv.org/abs/2405.04972v1
- Date: Wed, 8 May 2024 11:25:04 GMT
- Title: Overcoming Anchoring Bias: The Potential of AI and XAI-based Decision Support
- Authors: Felix Haag, Carlo Stingl, Katrin Zerfass, Konstantin Hopf, Thorsten Staake,
- Abstract summary: Information systems (IS) are frequently designed to leverage the negative effect of anchoring bias to influence individuals' decision-making.
Recent advances in Artificial Intelligence (AI) have opened new opportunities for mitigating biased decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Information systems (IS) are frequently designed to leverage the negative effect of anchoring bias to influence individuals' decision-making (e.g., by manipulating purchase decisions). Recent advances in Artificial Intelligence (AI) and the explanations of its decisions through explainable AI (XAI) have opened new opportunities for mitigating biased decisions. So far, the potential of these technological advances to overcome anchoring bias remains widely unclear. To this end, we conducted two online experiments with a total of N=390 participants in the context of purchase decisions to examine the impact of AI and XAI-based decision support on anchoring bias. Our results show that AI alone and its combination with XAI help to mitigate the negative effect of anchoring bias. Ultimately, our findings have implications for the design of AI and XAI-based decision support and IS to overcome cognitive biases.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Biased AI can Influence Political Decision-Making [64.9461133083473]
This paper presents two experiments investigating the effects of partisan bias in AI language models on political decision-making.
We found that participants exposed to politically biased models were significantly more likely to adopt opinions and make decisions aligning with the AI's bias.
arXiv Detail & Related papers (2024-10-08T22:56:00Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Should XAI Nudge Human Decisions with Explanation Biasing? [2.6396287656676725]
This paper reviews our previous trials of Nudge-XAI, an approach that introduces automatic biases into explanations from explainable AIs (XAIs)
Nudge-XAI uses a user model that predicts the influence of providing an explanation or emphasizing it and attempts to guide users toward AI-suggested decisions without coercion.
arXiv Detail & Related papers (2024-06-11T14:53:07Z) - Logic-Based Explainability: Past, Present & Future [0.8547032097715571]
The adoption of machine learning (ML) and artificial intelligence (AI) is also a cause of grave concern.
The operation of the most advances AI/ML models is often beyond the grasp of human decision makers.
This paper provides a technical survey of logic-based XAI, its origins, the current topics of research, and emerging future topics of research.
arXiv Detail & Related papers (2024-06-04T10:41:55Z) - Does More Advice Help? The Effects of Second Opinions in AI-Assisted
Decision Making [45.20615051119694]
We explore whether and how the provision of second opinions may affect decision-makers' behavior and performance in AI-assisted decision-making.
We find that if both the AI model's decision recommendation and a second opinion are always presented together, decision-makers reduce their over-reliance on AI.
If decision-makers have the control to decide when to solicit a peer's second opinion, we find that their active solicitations of second opinions have the potential to mitigate over-reliance on AI.
arXiv Detail & Related papers (2024-01-13T12:19:01Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - On Two XAI Cultures: A Case Study of Non-technical Explanations in
Deployed AI System [3.4918511133757977]
Not much of XAI is comprehensible to non-AI experts, who nonetheless are the primary audience and major stakeholders of deployed AI systems in practice.
We advocate that it is critical to develop XAI methods for non-technical audiences.
We then present a real-life case study, where AI experts provided non-technical explanations of AI decisions to non-technical stakeholders.
arXiv Detail & Related papers (2021-12-02T07:02:27Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
People need more awareness of how AI works and its outcomes to build a relationship with that system.
In decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system.
arXiv Detail & Related papers (2021-02-10T14:28:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.