QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs
- URL: http://arxiv.org/abs/2405.05109v2
- Date: Sun, 25 Aug 2024 17:22:29 GMT
- Title: QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs
- Authors: Weijia Zhang, Vaishali Pal, Jia-Hong Huang, Evangelos Kanoulas, Maarten de Rijke,
- Abstract summary: Table summarization is a crucial task aimed at condensing information into concise and comprehensible textual summaries.
We propose a novel method to address these limitations by introducing query-focused multi-table summarization.
Our approach, which comprises a table serialization module, a summarization controller, and a large language model, generates query-dependent table summaries tailored to users' information needs.
- Score: 63.98556480088152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Table summarization is a crucial task aimed at condensing information from tabular data into concise and comprehensible textual summaries. However, existing approaches often fall short of adequately meeting users' information and quality requirements and tend to overlook the complexities of real-world queries. In this paper, we propose a novel method to address these limitations by introducing query-focused multi-table summarization. Our approach, which comprises a table serialization module, a summarization controller, and a large language model (LLM), utilizes textual queries and multiple tables to generate query-dependent table summaries tailored to users' information needs. To facilitate research in this area, we present a comprehensive dataset specifically tailored for this task, consisting of 4909 query-summary pairs, each associated with multiple tables. Through extensive experiments using our curated dataset, we demonstrate the effectiveness of our proposed method compared to baseline approaches. Our findings offer insights into the challenges of complex table reasoning for precise summarization, contributing to the advancement of research in query-focused multi-table summarization.
Related papers
- Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
We propose a knowledge-intensive approach that reframes query-focused summarization as a knowledge-intensive task setup.
The retrieval module efficiently retrieves potentially relevant documents from a large-scale knowledge corpus.
The summarization controller seamlessly integrates a powerful large language model (LLM)-based summarizer with a carefully tailored prompt.
arXiv Detail & Related papers (2024-08-19T18:54:20Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
Large Language Models (LLMs) often do not perform well on queries that require the aggregation of information across texts.
TACT contains challenging instructions that demand stitching information scattered across one or more texts.
We construct this dataset by leveraging an existing dataset of texts and their associated tables.
We demonstrate that all contemporary LLMs perform poorly on this dataset, achieving an accuracy below 38%.
arXiv Detail & Related papers (2024-06-05T20:32:56Z) - Beyond Extraction: Contextualising Tabular Data for Efficient
Summarisation by Language Models [0.0]
The conventional use of the Retrieval-Augmented Generation architecture has proven effective for retrieving information from diverse documents.
This research introduces an innovative approach to enhance the accuracy of complex table queries in RAG-based systems.
arXiv Detail & Related papers (2024-01-04T16:16:14Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
People primarily consult tables to conduct data analysis or answer specific questions.
We define a new query-focused table summarization task, where text generation models have to perform human-like reasoning.
We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables.
arXiv Detail & Related papers (2023-05-23T17:43:51Z) - Long Text and Multi-Table Summarization: Dataset and Method [20.90939310713561]
FINDSum is built on 21,125 annual reports from 3,794 companies.
It has two subsets for summarizing each company's results of operations and liquidity.
We propose a set of evaluation metrics to assess the usage of numerical information in produced summaries.
arXiv Detail & Related papers (2023-02-08T00:46:55Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
In this work, we consider the problem of leveraging only generic summarization resources to build an abstractive QFS system.
We propose Marge, a Masked ROUGE Regression framework composed of a novel unified representation for summaries and queries.
Despite learning from minimal supervision, our system achieves state-of-the-art results in the distantly supervised setting.
arXiv Detail & Related papers (2020-12-29T14:39:35Z) - QBSUM: a Large-Scale Query-Based Document Summarization Dataset from
Real-world Applications [20.507631900617817]
We present QBSUM, a high-quality large-scale dataset consisting of 49,000+ data samples for the task of Chinese query-based document summarization.
We also propose multiple unsupervised and supervised solutions to the task and demonstrate their high-speed inference and superior performance via both offline experiments and online A/B tests.
arXiv Detail & Related papers (2020-10-27T07:30:04Z) - Summarizing and Exploring Tabular Data in Conversational Search [36.14882974814593]
We build a new conversation-oriented, open-domain table summarization dataset.
It includes annotated table summaries, which not only answer questions but also help people explore other information in the table.
We utilize this dataset to develop automatic table summarization systems as SOTA baselines.
arXiv Detail & Related papers (2020-05-23T08:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.