Discretely Beyond $1/e$: Guided Combinatorial Algorithms for Submodular Maximization
- URL: http://arxiv.org/abs/2405.05202v2
- Date: Wed, 22 May 2024 20:36:51 GMT
- Title: Discretely Beyond $1/e$: Guided Combinatorial Algorithms for Submodular Maximization
- Authors: Yixin Chen, Ankur Nath, Chunli Peng, Alan Kuhnle,
- Abstract summary: For constrained, not necessarily monotone submodular, all known approximation algorithms with ratio greater than $1/e$ require continuous ideas.
For algorithms, the best known approximation ratios for both size and matroid constraint are obtained by a simple randomized greedy algorithm.
- Score: 13.86054078646307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For constrained, not necessarily monotone submodular maximization, all known approximation algorithms with ratio greater than $1/e$ require continuous ideas, such as queries to the multilinear extension of a submodular function and its gradient, which are typically expensive to simulate with the original set function. For combinatorial algorithms, the best known approximation ratios for both size and matroid constraint are obtained by a simple randomized greedy algorithm of Buchbinder et al. [9]: $1/e \approx 0.367$ for size constraint and $0.281$ for the matroid constraint in $\mathcal O (kn)$ queries, where $k$ is the rank of the matroid. In this work, we develop the first combinatorial algorithms to break the $1/e$ barrier: we obtain approximation ratio of $0.385$ in $\mathcal O (kn)$ queries to the submodular set function for size constraint, and $0.305$ for a general matroid constraint. These are achieved by guiding the randomized greedy algorithm with a fast local search algorithm. Further, we develop deterministic versions of these algorithms, maintaining the same ratio and asymptotic time complexity. Finally, we develop a deterministic, nearly linear time algorithm with ratio $0.377$.
Related papers
- Fast algorithms for k-submodular maximization subject to a matroid
constraint [10.270420338235237]
We apply a Threshold-Decreasing Algorithm to maximize $k$-submodular functions under a matroid constraint.
We give a $(frac12 - epsilon)$-approximation algorithm for $k$-submodular function.
arXiv Detail & Related papers (2023-07-26T07:08:03Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Linear Query Approximation Algorithms for Non-monotone Submodular
Maximization under Knapsack Constraint [16.02833173359407]
This work introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular over a ground set of size $n$ subject to a knapsack constraint.
$mathsfDLA$ is a deterministic algorithm that provides an approximation factor of $6+epsilon$ while $mathsfRLA$ is a randomized algorithm with an approximation factor of $4+epsilon$.
arXiv Detail & Related papers (2023-05-17T15:27:33Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Simultaenous Sieves: A Deterministic Streaming Algorithm for
Non-Monotone Submodular Maximization [16.346069386394703]
We present a deterministic, single-pass streaming algorithm for the problem of maximizing a submodular function, not necessarily a monotone, with respect to a cardinality constraint.
For a monotone, single-pass streaming algorithm, our algorithm achieves in time an improvement of the best approximation factor from $1/9$ of previous literature to $approx 0.2689$.
arXiv Detail & Related papers (2020-10-27T15:22:49Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - Revisiting Modified Greedy Algorithm for Monotone Submodular
Maximization with a Knapsack Constraint [75.85952446237599]
We show that a modified greedy algorithm can achieve an approximation factor of $0.305$.
We derive a data-dependent upper bound on the optimum.
It can also be used to significantly improve the efficiency of such algorithms as branch and bound.
arXiv Detail & Related papers (2020-08-12T15:40:21Z) - Linear-Time Algorithms for Adaptive Submodular Maximization [17.19443570570189]
First, we develop a well-studied adaptive submodular problem subject to a cardinality constraint.
Second, we introduce the concept of fully adaptive submodularity.
Our algorithm achieves a $frac1-1/e-epsilon4-2/e-2epsilon$ approximation ratio using only $O(nlogfrac1epsilon)$ number of function evaluations.
arXiv Detail & Related papers (2020-07-08T15:54:28Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.