DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
- URL: http://arxiv.org/abs/2405.05231v1
- Date: Wed, 8 May 2024 17:27:11 GMT
- Title: DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
- Authors: Renjie Liu, Yichuan Wang, Xiao Yan, Zhenkun Cai, Minjie Wang, Haitian Jiang, Bo Tang, Jinyang Li,
- Abstract summary: Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications.
DiskGNN achieves high I/O efficiency and thus fast training without hurting model accuracy.
We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training.
- Score: 12.945647145403438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications. To train GNNs on large graphs that exceed CPU memory, several systems store data on disk and conduct out-of-core processing. However, these systems suffer from either read amplification when reading node features that are usually smaller than a disk page or degraded model accuracy by treating the graph as disconnected partitions. To close this gap, we build a system called DiskGNN, which achieves high I/O efficiency and thus fast training without hurting model accuracy. The key technique used by DiskGNN is offline sampling, which helps decouple graph sampling from model computation. In particular, by conducting graph sampling beforehand, DiskGNN acquires the node features that will be accessed by model computation, and such information is utilized to pack the target node features contiguously on disk to avoid read amplification. Besides, \name{} also adopts designs including four-level feature store to fully utilize the memory hierarchy to cache node features and reduce disk access, batched packing to accelerate the feature packing process, and pipelined training to overlap disk access with other operations. We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training. The results show that DiskGNN can speed up the baselines by over 8x while matching their best model accuracy.
Related papers
- LSM-GNN: Large-scale Storage-based Multi-GPU GNN Training by Optimizing Data Transfer Scheme [12.64360444043247]
Graph Neural Networks (GNNs) are widely used today in recommendation systems, fraud detection, and node/link classification tasks.
To address limited memory capacities, traditional GNN training approaches use graph partitioning and sharding techniques.
We propose Large-scale Storage-based Multi- GPU GNN framework (LSM-GNN)
LSM-GNN incorporates a hybrid eviction policy that intelligently manages cache space by using both static and dynamic node information.
arXiv Detail & Related papers (2024-07-21T20:41:39Z) - Reducing Memory Contention and I/O Congestion for Disk-based GNN Training [6.492879435794228]
Graph neural networks (GNNs) gain wide popularity. Large graphs with high-dimensional features become common and training GNNs on them is non-trivial.
Given a gigantic graph, even sample-based GNN training cannot work efficiently, since it is difficult to keep the graph's entire data in memory during the training process.
Memory and I/Os are hence critical for effectual disk-based training.
arXiv Detail & Related papers (2024-06-20T04:24:51Z) - SpanGNN: Towards Memory-Efficient Graph Neural Networks via Spanning Subgraph Training [14.63975787929143]
Graph Neural Networks (GNNs) have superior capability in learning graph data.
Full-graph GNN training generally has high accuracy, however, it suffers from large peak memory usage.
We propose a new memory-efficient GNN training method using spanning subgraph, called SpanGNN.
arXiv Detail & Related papers (2024-06-07T13:46:23Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - CATGNN: Cost-Efficient and Scalable Distributed Training for Graph Neural Networks [7.321893519281194]
Existing distributed systems load the entire graph in memory for graph partitioning.
We propose CATGNN, a cost-efficient and scalable distributed GNN training system.
We also propose a novel streaming partitioning algorithm named SPRING for distributed GNN training.
arXiv Detail & Related papers (2024-04-02T20:55:39Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - Communication-Efficient Graph Neural Networks with Probabilistic
Neighborhood Expansion Analysis and Caching [59.8522166385372]
Training and inference with graph neural networks (GNNs) on massive graphs has been actively studied since the inception of GNNs.
This paper is concerned with minibatch training and inference with GNNs that employ node-wise sampling in distributed settings.
We present SALIENT++, which extends the prior state-of-the-art SALIENT system to work with partitioned feature data.
arXiv Detail & Related papers (2023-05-04T21:04:01Z) - BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and
Preprocessing [0.0]
Graph neural networks (GNNs) have extended the success of deep neural networks (DNNs) to non-Euclidean graph data.
Existing systems are inefficient to train large graphs with billions of nodes and edges with GPUs.
This paper proposes BGL, a distributed GNN training system designed to address the bottlenecks with a few key ideas.
arXiv Detail & Related papers (2021-12-16T00:37:37Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
Full-batch training on Graph Neural Networks (GNN) to learn the structure of large graphs is a critical problem that needs to scale to hundreds of compute nodes to be feasible.
In this paper, we presentGNN that optimize the well-known Deep Graph Library (DGL) for full-batch training on CPU clusters.
Our results on four common GNN benchmark datasets show up to 3.7x speed-up using a single CPU socket and up to 97x speed-up using 128 CPU sockets.
arXiv Detail & Related papers (2021-04-14T08:46:35Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.