Towards Invariant Time Series Forecasting in Smart Cities
- URL: http://arxiv.org/abs/2405.05430v1
- Date: Wed, 8 May 2024 21:23:01 GMT
- Title: Towards Invariant Time Series Forecasting in Smart Cities
- Authors: Ziyi Zhang, Shaogang Ren, Xiaoning Qian, Nick Duffield,
- Abstract summary: We propose a solution to derive invariant representations for more robust predictions under different urban environments.
Our method can be extended to diverse fields including climate modeling, urban planning, and smart city resource management.
- Score: 21.697069894721448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the transformative landscape of smart cities, the integration of the cutting-edge web technologies into time series forecasting presents a pivotal opportunity to enhance urban planning, sustainability, and economic growth. The advancement of deep neural networks has significantly improved forecasting performance. However, a notable challenge lies in the ability of these models to generalize well to out-of-distribution (OOD) time series data. The inherent spatial heterogeneity and domain shifts across urban environments create hurdles that prevent models from adapting and performing effectively in new urban environments. To tackle this problem, we propose a solution to derive invariant representations for more robust predictions under different urban environments instead of relying on spurious correlation across urban environments for better generalizability. Through extensive experiments on both synthetic and real-world data, we demonstrate that our proposed method outperforms traditional time series forecasting models when tackling domain shifts in changing urban environments. The effectiveness and robustness of our method can be extended to diverse fields including climate modeling, urban planning, and smart city resource management.
Related papers
- ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction [6.0588503913405045]
We propose a robust approach to predict human mobility patterns called ST-MoE-BERT.
Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics.
We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods.
arXiv Detail & Related papers (2024-10-18T00:32:18Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
Current data-driven models often struggle with data sparsity and the integration of diverse urban data sources.
We introduce a deep dynamic learning framework designed for traffic accident prediction.
It incorporates dual adaptive graph learning mechanisms that enable high-order cross-regional learning.
It also employs an advance attention mechanism to fuse multiple views of accident data and urban functional features.
arXiv Detail & Related papers (2024-07-24T21:10:34Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
We present the UrbanPT, which seamlessly integrates atemporal-temporal encoder with instruction-tuning paradigm.
We conduct extensive experiments on various public datasets, covering differenttemporal prediction tasks.
The results consistently demonstrate that our UrbanPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-25T12:37:29Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
This research introduces an implementation of a tensor-field-based generative urban modeling toolkit.
Our method encodes contextual constraints such as waterfront edges, terrain, view-axis, existing streets, landmarks, and non-geometric design inputs.
This allows users to generate many, diverse urban fabric configurations that resemble real-world cities with very few model inputs.
arXiv Detail & Related papers (2022-12-13T17:58:02Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
We present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time.
We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task.
arXiv Detail & Related papers (2021-06-14T04:31:15Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Empowering Urban Governance through Urban Science: Multi-scale Dynamics
of Urban Systems Worldwide [0.0]
The current science of cities can provide a useful foundation for future urban policies.
International comparisons of the evolution of cities often produce uncertain results because national territorial frameworks are not always in strict correspondence with the dynamics of urban systems.
We propose to provide various compositions of systems of cities to better take into account the dynamic networking of cities that go beyond regional and national territorial boundaries.
arXiv Detail & Related papers (2020-05-20T12:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.