From Human Judgements to Predictive Models: Unravelling Acceptability in Code-Mixed Sentences
- URL: http://arxiv.org/abs/2405.05572v1
- Date: Thu, 9 May 2024 06:40:39 GMT
- Title: From Human Judgements to Predictive Models: Unravelling Acceptability in Code-Mixed Sentences
- Authors: Prashant Kodali, Anmol Goel, Likhith Asapu, Vamshi Krishna Bonagiri, Anirudh Govil, Monojit Choudhury, Manish Shrivastava, Ponnurangam Kumaraguru,
- Abstract summary: Modelling human judgements for the acceptability of code-mixed text can help in distinguishing natural code-mixed text.
Cline is the largest of its kind with 16,642 sentences, consisting of samples sourced from two sources.
Experiments using Cline demonstrate that simple Multilayer Perceptron (MLP) models trained solely on code-mixing metrics are outperformed by fine-tuned Multilingual Large Language Models (MLLMs)
- Score: 18.53327811304381
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current computational approaches for analysing or generating code-mixed sentences do not explicitly model "naturalness" or "acceptability" of code-mixed sentences, but rely on training corpora to reflect distribution of acceptable code-mixed sentences. Modelling human judgement for the acceptability of code-mixed text can help in distinguishing natural code-mixed text and enable quality-controlled generation of code-mixed text. To this end, we construct Cline - a dataset containing human acceptability judgements for English-Hindi (en-hi) code-mixed text. Cline is the largest of its kind with 16,642 sentences, consisting of samples sourced from two sources: synthetically generated code-mixed text and samples collected from online social media. Our analysis establishes that popular code-mixing metrics such as CMI, Number of Switch Points, Burstines, which are used to filter/curate/compare code-mixed corpora have low correlation with human acceptability judgements, underlining the necessity of our dataset. Experiments using Cline demonstrate that simple Multilayer Perceptron (MLP) models trained solely on code-mixing metrics are outperformed by fine-tuned pre-trained Multilingual Large Language Models (MLLMs). Specifically, XLM-Roberta and Bernice outperform IndicBERT across different configurations in challenging data settings. Comparison with ChatGPT's zero and fewshot capabilities shows that MLLMs fine-tuned on larger data outperform ChatGPT, providing scope for improvement in code-mixed tasks. Zero-shot transfer from English-Hindi to English-Telugu acceptability judgments using our model checkpoints proves superior to random baselines, enabling application to other code-mixed language pairs and providing further avenues of research. We publicly release our human-annotated dataset, trained checkpoints, code-mix corpus, and code for data generation and model training.
Related papers
- Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings [77.20838441870151]
Commit message generation is a crucial task in software engineering that is challenging to evaluate correctly.
We use an online metric - the number of edits users introduce before committing the generated messages to the VCS - to select metrics for offline experiments.
Our results indicate that edit distance exhibits the highest correlation, whereas commonly used similarity metrics such as BLEU and METEOR demonstrate low correlation.
arXiv Detail & Related papers (2024-10-15T20:32:07Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
We introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection.
We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text.
arXiv Detail & Related papers (2024-09-23T07:55:35Z) - Elevating Code-mixed Text Handling through Auditory Information of Words [24.53638976212391]
We propose an effective approach for creating language models for handling code-mixed textual data using auditory information of words from SOUNDEX.
Our approach includes a pre-training step based on masked-language-modelling, which includes SOUNDEX representations (SAMLM) and a new method of providing input data to the pre-trained model.
arXiv Detail & Related papers (2023-10-27T14:03:30Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
Current decoding methods struggle to generate texts that align with human texts across different aspects.
In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts.
We prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts.
arXiv Detail & Related papers (2023-10-02T09:35:27Z) - Mixed-Distil-BERT: Code-mixed Language Modeling for Bangla, English, and Hindi [0.0]
We introduce Tri-Distil-BERT, a multilingual model pre-trained on Bangla, English, and Hindi, and Mixed-Distil-BERT, a model fine-tuned on code-mixed data.
Our two-tiered pre-training approach offers efficient alternatives for multilingual and code-mixed language understanding.
arXiv Detail & Related papers (2023-09-19T02:59:41Z) - Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation [55.92852268168816]
N-gram matching-based evaluation metrics, such as BLEU and chrF, are widely utilized across a range of natural language generation (NLG) tasks.
Recent studies have revealed a weak correlation between these matching-based metrics and human evaluations.
We propose to utilize textitmultiple references to enhance the consistency between these metrics and human evaluations.
arXiv Detail & Related papers (2023-08-06T14:49:26Z) - My Boli: Code-mixed Marathi-English Corpora, Pretrained Language Models
and Evaluation Benchmarks [0.7874708385247353]
We focus on the low-resource Indian language Marathi which lacks any prior work in code-mixing.
We present L3Cube-MeCorpus, a large code-mixed Marathi-English (Mr-En) corpus with 10 million social media sentences for pretraining.
We also release L3Cube-MeBERT and MeRoBERTa, code-mixed BERT-based transformer models pre-trained on MeCorpus.
arXiv Detail & Related papers (2023-06-24T18:17:38Z) - Comparative Study of Pre-Trained BERT Models for Code-Mixed
Hindi-English Data [0.7874708385247353]
"Code Mixed" refers to the use of more than one language in the same text.
In this work, we focus on low-resource Hindi-English code-mixed language.
We report state-of-the-art results on respective datasets using HingBERT-based models.
arXiv Detail & Related papers (2023-05-25T05:10:28Z) - Not All Errors are Equal: Learning Text Generation Metrics using
Stratified Error Synthesis [79.18261352971284]
We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation.
We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings.
SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
arXiv Detail & Related papers (2022-10-10T22:30:26Z) - A Data Cartography based MixUp for Pre-trained Language Models [47.90235939359225]
MixUp is a data augmentation strategy where additional samples are generated during training by combining random pairs of training samples and their labels.
We propose TDMixUp, a novel MixUp strategy that leverages Training Dynamics and allows more informative samples to be combined for generating new data samples.
We empirically validate that our method not only achieves competitive performance using a smaller subset of the training data compared with strong baselines, but also yields lower expected calibration error on the pre-trained language model, BERT, on both in-domain and out-of-domain settings in a wide range of NLP tasks.
arXiv Detail & Related papers (2022-05-06T17:59:19Z) - Exploring Text-to-Text Transformers for English to Hinglish Machine
Translation with Synthetic Code-Mixing [19.19256927651015]
We describe models that convert monolingual English text into Hinglish (code-mixed Hindi and English)
Given the recent success of pretrained language models, we also test the utility of two recent Transformer-based encoder-decoder models.
Our models place first in the overall ranking of the English-Hinglish official shared task.
arXiv Detail & Related papers (2021-05-18T19:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.