Beyond Prompts: Learning from Human Communication for Enhanced AI Intent Alignment
- URL: http://arxiv.org/abs/2405.05678v1
- Date: Thu, 9 May 2024 11:10:29 GMT
- Title: Beyond Prompts: Learning from Human Communication for Enhanced AI Intent Alignment
- Authors: Yoonsu Kim, Kihoon Son, Seoyoung Kim, Juho Kim,
- Abstract summary: We study human strategies for intent specification in human-human communication.
This study aims to advance toward a human-centered AI system by bringing together human communication strategies for the design of AI systems.
- Score: 30.93897332124916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AI intent alignment, ensuring that AI produces outcomes as intended by users, is a critical challenge in human-AI interaction. The emergence of generative AI, including LLMs, has intensified the significance of this problem, as interactions increasingly involve users specifying desired results for AI systems. In order to support better AI intent alignment, we aim to explore human strategies for intent specification in human-human communication. By studying and comparing human-human and human-LLM communication, we identify key strategies that can be applied to the design of AI systems that are more effective at understanding and aligning with user intent. This study aims to advance toward a human-centered AI system by bringing together human communication strategies for the design of AI systems.
Related papers
- Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
We advocate for a shift toward viewing AI as a learning partner, akin to a student who learns from interactions with humans.
We suggest that a "third mind" emerges through collaborative human-AI relationships.
arXiv Detail & Related papers (2024-10-07T19:19:39Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
Leveraging Artificial Intelligence in decision support systems has disproportionately focused on technological advancements.
A human-centered perspective attempts to alleviate this concern by designing AI solutions for seamless integration with existing processes.
arXiv Detail & Related papers (2023-10-30T17:46:38Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems.
We elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS)
We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT.
arXiv Detail & Related papers (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
We argue that alignment to human intent is insufficient for safe AI systems.
We argue that preservation of long-term agency of humans may be a more robust standard.
arXiv Detail & Related papers (2023-05-30T17:14:01Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.