Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning
- URL: http://arxiv.org/abs/2405.05714v2
- Date: Tue, 2 Jul 2024 07:06:15 GMT
- Title: Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning
- Authors: Rui Zhao, Bin Shi, Jianfei Ruan, Tianze Pan, Bo Dong,
- Abstract summary: Existing methods typically learn noisy class posteriors by training a classification model with noisy labels.
This paper proposes to augment the supervised information with part-level labels, encouraging the model to focus on and integrate richer information from various parts.
Our method is theoretically sound, while experiments show that it is empirically effective in synthetic and real-world noisy benchmarks.
- Score: 13.502549812291878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In noisy label learning, estimating noisy class posteriors plays a fundamental role for developing consistent classifiers, as it forms the basis for estimating clean class posteriors and the transition matrix. Existing methods typically learn noisy class posteriors by training a classification model with noisy labels. However, when labels are incorrect, these models may be misled to overemphasize the feature parts that do not reflect the instance characteristics, resulting in significant errors in estimating noisy class posteriors. To address this issue, this paper proposes to augment the supervised information with part-level labels, encouraging the model to focus on and integrate richer information from various parts. Specifically, our method first partitions features into distinct parts by cropping instances, yielding part-level labels associated with these various parts. Subsequently, we introduce a novel single-to-multiple transition matrix to model the relationship between the noisy and part-level labels, which incorporates part-level labels into a classifier-consistent framework. Utilizing this framework with part-level labels, we can learn the noisy class posteriors more precisely by guiding the model to integrate information from various parts, ultimately improving the classification performance. Our method is theoretically sound, while experiments show that it is empirically effective in synthetic and real-world noisy benchmarks.
Related papers
- Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
Noisy multi-label learning has garnered increasing attention due to the challenges posed by collecting large-scale accurate labels.
The introduction of transition matrices can help model multi-label noise and enable the development of statistically consistent algorithms.
We propose a novel estimator that leverages label correlations without the need for anchor points or precise fitting of noisy class posteriors.
arXiv Detail & Related papers (2023-09-22T08:35:38Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
noisy labels in real-world applications often depend on both the true label and the features.
In this work, we tackle instance-dependent label noise with a novel deep generative model that avoids explicitly modeling the noise transition matrix.
Our algorithm leverages casual representation learning and simultaneously identifies the high-level content and style latent factors from the data.
arXiv Detail & Related papers (2023-05-10T15:29:07Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Learning from Multiple Annotators by Incorporating Instance Features [15.643325526074804]
Learning from multiple annotators aims to induce a high-quality classifier from training instances.
Most existing methods adopt class-level confusion matrices of annotators that observed labels do not depend on the instance features.
We propose a noise transition matrix, which incorporates the influence of instance features on annotators' performance based on confusion matrices.
arXiv Detail & Related papers (2021-06-29T08:07:24Z) - Learning from Noisy Labels for Entity-Centric Information Extraction [17.50856935207308]
We propose a simple co-regularization framework for entity-centric information extraction.
These models are jointly optimized with task-specific loss, and are regularized to generate similar predictions.
In the end, we can take any of the trained models for inference.
arXiv Detail & Related papers (2021-04-17T22:49:12Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z) - Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels [86.5943044285146]
The label noise transition matrix $T$ reflects the probabilities that true labels flip into noisy ones.
In this paper, we focus on learning under the mixed closed-set and open-set label noise.
Our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.
arXiv Detail & Related papers (2020-12-02T02:42:45Z) - Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels [98.13491369929798]
We propose a framework called Class2Simi, which transforms data points with noisy class labels to data pairs with noisy similarity labels.
Class2Simi is computationally efficient because not only this transformation is on-the-fly in mini-batches, but also it just changes loss on top of model prediction into a pairwise manner.
arXiv Detail & Related papers (2020-06-14T07:55:32Z) - Multi-Class Classification from Noisy-Similarity-Labeled Data [98.13491369929798]
We propose a method for learning from only noisy-similarity-labeled data.
We use a noise transition matrix to bridge the class-posterior probability between clean and noisy data.
We build a novel learning system which can assign noise-free class labels for instances.
arXiv Detail & Related papers (2020-02-16T05:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.