How Quality Affects Deep Neural Networks in Fine-Grained Image Classification
- URL: http://arxiv.org/abs/2405.05742v1
- Date: Thu, 9 May 2024 12:59:11 GMT
- Title: How Quality Affects Deep Neural Networks in Fine-Grained Image Classification
- Authors: Joseph Smith, Zheming Zuo, Jonathan Stonehouse, Boguslaw Obara,
- Abstract summary: We propose a No-Reference Image Quality Assessment (NRIQA) guided cut-off point selection (CPS) strategy to enhance the performance of a fine-grained classification system.
We take the three most commonly adopted image augmentation configurations -- cropping, rotating, and blurring -- as the entry point.
Concretely, the cut-off points yielded by those methods are aggregated via majority voting to inform the process of image subset selection.
- Score: 0.799543372823325
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a No-Reference Image Quality Assessment (NRIQA) guided cut-off point selection (CPS) strategy to enhance the performance of a fine-grained classification system. Scores given by existing NRIQA methods on the same image may vary and not be as independent of natural image augmentations as expected, which weakens their connection and explainability to fine-grained image classification. Taking the three most commonly adopted image augmentation configurations -- cropping, rotating, and blurring -- as the entry point, we formulate a two-step mechanism for selecting the most discriminative subset from a given image dataset by considering both the confidence of model predictions and the density distribution of image qualities over several NRIQA methods. Concretely, the cut-off points yielded by those methods are aggregated via majority voting to inform the process of image subset selection. The efficacy and efficiency of such a mechanism have been confirmed by comparing the models being trained on high-quality images against a combination of high- and low-quality ones, with a range of 0.7% to 4.2% improvement on a commercial product dataset in terms of mean accuracy through four deep neural classifiers. The robustness of the mechanism has been proven by the observations that all the selected high-quality images can work jointly with 70% low-quality images with 1.3% of classification precision sacrificed when using ResNet34 in an ablation study.
Related papers
- Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
Different NR-IQA models are likely to induce different enhanced images, which are ultimately subject to psychophysical testing.
This leads to a new computational method for comparing NR-IQA models within the analysis-by-synthesis framework.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
We present a novel framework for generating adversarial benchmarks to evaluate the robustness of image classification models.
Our framework allows users to customize the types of distortions to be optimally applied to images, which helps address the specific distortions relevant to their deployment.
arXiv Detail & Related papers (2023-10-28T07:40:42Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
Perceptual Image Quality Index (PIQI) is proposed to assess the quality of digital images.
The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods.
arXiv Detail & Related papers (2023-05-16T06:44:17Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
Blind image quality assessment (BIQA) predicts the human perception of image quality without any reference information.
We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks.
arXiv Detail & Related papers (2023-03-27T07:58:09Z) - Iterative Optimization of Pseudo Ground-Truth Face Image Quality Labels [0.0]
Face image quality assessment (FIQA) techniques provide sample quality information that can be used to reject poor quality data.
We propose a quality label optimization approach, which incorporates sample-quality information from mated-pair similarities into quality predictions.
We evaluate the proposed approach using three state-of-the-art FIQA methods over three diverse datasets.
arXiv Detail & Related papers (2022-08-31T08:24:09Z) - Non-Reference Quality Monitoring of Digital Images using Gradient
Statistics and Feedforward Neural Networks [0.1657441317977376]
A non-reference quality metric is proposed to assess the quality of digital images.
The proposed metric is computationally faster than its counterparts and can be used for the quality assessment of image sequences.
arXiv Detail & Related papers (2021-12-27T20:21:55Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
We propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination.
The effectiveness of our proposed method is demonstrated on four popular IQA databases.
arXiv Detail & Related papers (2021-08-09T16:48:34Z) - Unpaired Image Enhancement with Quality-Attention Generative Adversarial
Network [92.01145655155374]
We propose a quality attention generative adversarial network (QAGAN) trained on unpaired data.
Key novelty of the proposed QAGAN lies in the injected QAM for the generator.
Our proposed method achieves better performance in both objective and subjective evaluations.
arXiv Detail & Related papers (2020-12-30T05:57:20Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.