ACTION: Augmentation and Computation Toolbox for Brain Network Analysis with Functional MRI
- URL: http://arxiv.org/abs/2405.06178v1
- Date: Fri, 10 May 2024 01:45:09 GMT
- Title: ACTION: Augmentation and Computation Toolbox for Brain Network Analysis with Functional MRI
- Authors: Yuqi Fang, Junhao Zhang, Linmin Wang, Qianqian Wang, Mingxia Liu,
- Abstract summary: Action is a Python-based and cross-platform toolbox for fMRI analysis.
It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation.
It supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data.
- Score: 28.639321546348654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional magnetic resonance imaging (fMRI) has been increasingly employed to investigate functional brain activity. Many fMRI-related software/toolboxes have been developed, providing specialized algorithms for fMRI analysis. However, existing toolboxes seldom consider fMRI data augmentation, which is quite useful, especially in studies with limited or imbalanced data. Moreover, current studies usually focus on analyzing fMRI using conventional machine learning models that rely on human-engineered fMRI features, without investigating deep learning models that can automatically learn data-driven fMRI representations. In this work, we develop an open-source toolbox, called Augmentation and Computation Toolbox for braIn netwOrk aNalysis (ACTION), offering comprehensive functions to streamline fMRI analysis. The ACTION is a Python-based and cross-platform toolbox with graphical user-friendly interfaces. It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation. Many popular methods for brain network construction and network feature extraction are included. In particular, it supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data (3,800+ resting-state fMRI scans) for model pretraining to enhance model performance for downstream tasks. To facilitate multi-site fMRI studies, it is also equipped with several popular federated learning strategies. Furthermore, it enables users to design and test custom algorithms through scripting, greatly improving its utility and extensibility. We demonstrate the effectiveness and user-friendliness of ACTION on real fMRI data and present the experimental results. The software, along with its source code and manual, can be accessed online.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Artificial Intelligence in Fetal Resting-State Functional MRI Brain
Segmentation: A Comparative Analysis of 3D UNet, VNet, and HighRes-Net Models [1.2382905694337476]
This study introduced a novel application of artificial intelligence (AI) for automated brain segmentation in fetal brain fMRI, magnetic resonance imaging (fMRI)
Three AI models were employed: 3D UNet, VNet, and HighResNet.
Our findings shed light on the performance of different AI models for fetal resting-state fMRI brain segmentation.
arXiv Detail & Related papers (2023-11-17T19:57:05Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - SwiFT: Swin 4D fMRI Transformer [17.95502427633986]
We present SwiFTS (win 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from volumes fMRI.
We evaluate SwiFT using multiple large-scale resting-state fMRI datasets to predict sex age and cognitive intelligence.
arXiv Detail & Related papers (2023-07-12T04:53:36Z) - Leveraging Brain Modularity Prior for Interpretable Representation
Learning of fMRI [38.236414924531196]
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in brain.
Previous studies propose to extract fMRI representations through diverse machine/deep learning methods for subsequent analysis.
This paper proposes a Brain Modularity-constrained dynamic Representation learning (BMR) framework for interpretable fMRI analysis.
arXiv Detail & Related papers (2023-06-24T23:45:47Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Deep Labeling of fMRI Brain Networks Using Cloud Based Processing [0.0]
Resting state fMRI is used in neurosurgical pre-planning to visualize functional regions and assess regional activity.
We propose an end-to-end reproducible pipeline which incorporates image processing of rs-fMRI in a cloud-based workflow.
We use deep learning to automate the classification of Resting State Networks (RSNs)
arXiv Detail & Related papers (2022-09-16T23:59:42Z) - FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain
Network Generation [11.434951542977515]
We develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation.
Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks.
Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions.
arXiv Detail & Related papers (2022-05-25T03:26:50Z) - Shared Space Transfer Learning for analyzing multi-site fMRI data [83.41324371491774]
Multi-voxel pattern analysis (MVPA) learns predictive models from task-based functional magnetic resonance imaging (fMRI) data.
MVPA works best with a well-designed feature set and an adequate sample size.
Most fMRI datasets are noisy, high-dimensional, expensive to collect, and with small sample sizes.
This paper proposes the Shared Space Transfer Learning (SSTL) as a novel transfer learning approach.
arXiv Detail & Related papers (2020-10-24T08:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.