Residual-NeRF: Learning Residual NeRFs for Transparent Object Manipulation
- URL: http://arxiv.org/abs/2405.06181v1
- Date: Fri, 10 May 2024 01:53:29 GMT
- Title: Residual-NeRF: Learning Residual NeRFs for Transparent Object Manipulation
- Authors: Bardienus P. Duisterhof, Yuemin Mao, Si Heng Teng, Jeffrey Ichnowski,
- Abstract summary: Existing methods have difficulty reconstructing complete depth maps for challenging transparent objects.
Recent work has shown neural radiance fields (NeRFs) work well for depth perception in scenes with transparent objects.
We propose Residual-NeRF, a method to improve depth perception and training speed for transparent objects.
- Score: 7.395916591967461
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transparent objects are ubiquitous in industry, pharmaceuticals, and households. Grasping and manipulating these objects is a significant challenge for robots. Existing methods have difficulty reconstructing complete depth maps for challenging transparent objects, leaving holes in the depth reconstruction. Recent work has shown neural radiance fields (NeRFs) work well for depth perception in scenes with transparent objects, and these depth maps can be used to grasp transparent objects with high accuracy. NeRF-based depth reconstruction can still struggle with especially challenging transparent objects and lighting conditions. In this work, we propose Residual-NeRF, a method to improve depth perception and training speed for transparent objects. Robots often operate in the same area, such as a kitchen. By first learning a background NeRF of the scene without transparent objects to be manipulated, we reduce the ambiguity faced by learning the changes with the new object. We propose training two additional networks: a residual NeRF learns to infer residual RGB values and densities, and a Mixnet learns how to combine background and residual NeRFs. We contribute synthetic and real experiments that suggest Residual-NeRF improves depth perception of transparent objects. The results on synthetic data suggest Residual-NeRF outperforms the baselines with a 46.1% lower RMSE and a 29.5% lower MAE. Real-world qualitative experiments suggest Residual-NeRF leads to more robust depth maps with less noise and fewer holes. Website: https://residual-nerf.github.io
Related papers
- ASGrasp: Generalizable Transparent Object Reconstruction and Grasping from RGB-D Active Stereo Camera [9.212504138203222]
We propose ASGrasp, a 6-DoF grasp detection network that uses an RGB-D active stereo camera.
Our system distinguishes itself by its ability to directly utilize raw IR and RGB images for transparent object geometry reconstruction.
Our experiments demonstrate that ASGrasp can achieve over 90% success rate for generalizable transparent object grasping.
arXiv Detail & Related papers (2024-05-09T09:44:51Z) - SAID-NeRF: Segmentation-AIDed NeRF for Depth Completion of Transparent Objects [7.529049797077149]
Acquiring accurate depth information of transparent objects using off-the-shelf RGB-D cameras is a well-known challenge in Computer Vision and Robotics.
NeRFs are learning-free approaches and have demonstrated wide success in novel view synthesis and shape recovery.
Our proposed method-AID-NeRF shows significant performance on depth completion datasets for transparent objects and robotic grasping.
arXiv Detail & Related papers (2024-03-28T17:28:32Z) - Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs [59.12526668734703]
We introduce Composable Object Volume NeRF (COV-NeRF), an object-composable NeRF model that is the centerpiece of a real-to-sim pipeline.
COV-NeRF extracts objects from real images and composes them into new scenes, generating photorealistic renderings and many types of 2D and 3D supervision.
arXiv Detail & Related papers (2024-03-07T00:00:02Z) - Neural Radiance Fields for Transparent Object Using Visual Hull [0.8158530638728501]
Recently introduced Neural Radiance Fields (NeRF) is a view synthesis method.
We propose a NeRF-based method consisting of the following three steps: First, we reconstruct a three-dimensional shape of a transparent object using visual hull.
Second, we simulate the refraction of the rays inside of the transparent object according to Snell's law. Last, we sample points through refracted rays and put them into NeRF.
arXiv Detail & Related papers (2023-12-13T13:15:19Z) - NeRF-Loc: Transformer-Based Object Localization Within Neural Radiance
Fields [62.89785701659139]
We propose a transformer-based framework, NeRF-Loc, to extract 3D bounding boxes of objects in NeRF scenes.
NeRF-Loc takes a pre-trained NeRF model and camera view as input and produces labeled, oriented 3D bounding boxes of objects as output.
arXiv Detail & Related papers (2022-09-24T18:34:22Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance
Fields [54.27264716713327]
We show that a Neural Radiance Fields (NeRF) representation of a scene can be used to train dense object descriptors.
We use an optimized NeRF to extract dense correspondences between multiple views of an object, and then use these correspondences as training data for learning a view-invariant representation of the object.
Dense correspondence models supervised with our method significantly outperform off-the-shelf learned descriptors by 106%.
arXiv Detail & Related papers (2022-03-03T18:49:57Z) - Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects [23.933258829652186]
Existing depth cameras have difficulty detecting, localizing, and inferring the geometry of transparent objects.
We propose using neural radiance fields (NeRF) to detect, localize, and infer the geometry of transparent objects.
We show that NeRF and Dex-Net are able to reliably compute robust grasps on transparent objects, achieving 90% and 100% grasp success rates in physical experiments on an ABB YuMi.
arXiv Detail & Related papers (2021-10-27T07:02:53Z) - Depth-supervised NeRF: Fewer Views and Faster Training for Free [69.34556647743285]
DS-NeRF (Depth-supervised Neural Radiance Fields) is a loss for learning fields that takes advantage of readily-available depth supervision.
We show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal.
arXiv Detail & Related papers (2021-07-06T17:58:35Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.