Learning A Spiking Neural Network for Efficient Image Deraining
- URL: http://arxiv.org/abs/2405.06277v1
- Date: Fri, 10 May 2024 07:19:58 GMT
- Title: Learning A Spiking Neural Network for Efficient Image Deraining
- Authors: Tianyu Song, Guiyue Jin, Pengpeng Li, Kui Jiang, Xiang Chen, Jiyu Jin,
- Abstract summary: We present an Efficient Spiking Deraining Network, called ESDNet.
Our work is motivated by the observation that rain pixel values will lead to a more pronounced intensity of spike signals in SNNs.
We introduce a gradient proxy strategy to directly train the model for overcoming the challenge of training.
- Score: 20.270365030042623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, spiking neural networks (SNNs) have demonstrated substantial potential in computer vision tasks. In this paper, we present an Efficient Spiking Deraining Network, called ESDNet. Our work is motivated by the observation that rain pixel values will lead to a more pronounced intensity of spike signals in SNNs. However, directly applying deep SNNs to image deraining task still remains a significant challenge. This is attributed to the information loss and training difficulties that arise from discrete binary activation and complex spatio-temporal dynamics. To this end, we develop a spiking residual block to convert the input into spike signals, then adaptively optimize the membrane potential by introducing attention weights to adjust spike responses in a data-driven manner, alleviating information loss caused by discrete binary activation. By this way, our ESDNet can effectively detect and analyze the characteristics of rain streaks by learning their fluctuations. This also enables better guidance for the deraining process and facilitates high-quality image reconstruction. Instead of relying on the ANN-SNN conversion strategy, we introduce a gradient proxy strategy to directly train the model for overcoming the challenge of training. Experimental results show that our approach gains comparable performance against ANN-based methods while reducing energy consumption by 54%. The code source is available at https://github.com/MingTian99/ESDNet.
Related papers
- Spiking Neural Network as Adaptive Event Stream Slicer [10.279359105384334]
Event-based cameras provide rich edge information, high dynamic range, and high temporal resolution.
Many state-of-the-art event-based algorithms rely on splitting the events into fixed groups, resulting in the omission of crucial temporal information.
SpikeSlicer is a novel-designed plug-and-play event processing method capable of splitting events stream adaptively.
arXiv Detail & Related papers (2024-10-03T06:41:10Z) - Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning.
SNNs are vulnerable to adversarial attacks like convolutional neural networks.
We propose a biologically inspired methodology to enhance the robustness of SNNs.
arXiv Detail & Related papers (2024-04-26T00:57:06Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - A Study On the Effects of Pre-processing On Spatio-temporal Action
Recognition Using Spiking Neural Networks Trained with STDP [0.0]
It is important to study the behavior of SNNs trained with unsupervised learning methods on video classification tasks.
This paper presents methods of transposing temporal information into a static format, and then transforming the visual information into spikes using latency coding.
We show the effect of the similarity in the shape and speed of certain actions on action recognition with spiking neural networks.
arXiv Detail & Related papers (2021-05-31T07:07:48Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.