PUMA: margin-based data pruning
- URL: http://arxiv.org/abs/2405.06298v1
- Date: Fri, 10 May 2024 08:02:20 GMT
- Title: PUMA: margin-based data pruning
- Authors: Javier Maroto, Pascal Frossard,
- Abstract summary: We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin)
We propose PUMA, a new data pruning strategy that computes the margin using DeepFool.
We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies.
- Score: 51.12154122266251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been able to outperform humans in terms of classification accuracy in many tasks. However, to achieve robustness to adversarial perturbations, the best methodologies require to perform adversarial training on a much larger training set that has been typically augmented using generative models (e.g., diffusion models). Our main objective in this work, is to reduce these data requirements while achieving the same or better accuracy-robustness trade-offs. We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin). We find that the existing approaches that prune samples with low margin fails to increase robustness when we add a lot of synthetic data, and explain this situation with a perceptron learning task. Moreover, we find that pruning high margin samples for better accuracy increases the harmful impact of mislabeled perturbed data in adversarial training, hurting both robustness and accuracy. We thus propose PUMA, a new data pruning strategy that computes the margin using DeepFool, and prunes the training samples of highest margin without hurting performance by jointly adjusting the training attack norm on the samples of lowest margin. We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies. Not only PUMA achieves similar robustness with less data, but it also significantly increases the model accuracy, improving the performance trade-off.
Related papers
- DRoP: Distributionally Robust Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Breaking Boundaries: Balancing Performance and Robustness in Deep
Wireless Traffic Forecasting [11.029214459961114]
Balancing the trade-off between accuracy and robustness is a long-standing challenge in time series forecasting.
We study a wide array of perturbation scenarios and propose novel defense mechanisms against adversarial attacks using real-world telecom data.
arXiv Detail & Related papers (2023-11-16T11:10:38Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Gradient-Free Structured Pruning with Unlabeled Data [57.999191898036706]
We propose a gradient-free structured pruning framework that uses only unlabeled data.
Up to 40% of the original FLOP count can be reduced with less than a 4% accuracy loss across all tasks considered.
arXiv Detail & Related papers (2023-03-07T19:12:31Z) - SRoUDA: Meta Self-training for Robust Unsupervised Domain Adaptation [25.939292305808934]
Unsupervised domain adaptation (UDA) can transfer knowledge learned from rich-label dataset to unlabeled target dataset.
In this paper, we present a new meta self-training pipeline, named SRoUDA, for improving adversarial robustness of UDA models.
arXiv Detail & Related papers (2022-12-12T14:25:40Z) - Efficient Adversarial Training With Data Pruning [26.842714298874192]
We show that data pruning leads to improvements in convergence and reliability of adversarial training.
In some settings data pruning brings benefits from both worlds-it both improves adversarial accuracy and training time.
arXiv Detail & Related papers (2022-07-01T23:54:46Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.