ProCIS: A Benchmark for Proactive Retrieval in Conversations
- URL: http://arxiv.org/abs/2405.06460v1
- Date: Fri, 10 May 2024 13:11:07 GMT
- Title: ProCIS: A Benchmark for Proactive Retrieval in Conversations
- Authors: Chris Samarinas, Hamed Zamani,
- Abstract summary: We introduce a large-scale dataset for proactive document retrieval that consists of over 2.8 million conversations.
We conduct crowdsourcing experiments to obtain high-quality and relatively complete relevance judgments.
We also collect annotations related to the parts of the conversation that are related to each document, enabling us to evaluate proactive retrieval systems.
- Score: 21.23826888841565
- License:
- Abstract: The field of conversational information seeking, which is rapidly gaining interest in both academia and industry, is changing how we interact with search engines through natural language interactions. Existing datasets and methods are mostly evaluating reactive conversational information seeking systems that solely provide response to every query from the user. We identify a gap in building and evaluating proactive conversational information seeking systems that can monitor a multi-party human conversation and proactively engage in the conversation at an opportune moment by retrieving useful resources and suggestions. In this paper, we introduce a large-scale dataset for proactive document retrieval that consists of over 2.8 million conversations. We conduct crowdsourcing experiments to obtain high-quality and relatively complete relevance judgments through depth-k pooling. We also collect annotations related to the parts of the conversation that are related to each document, enabling us to evaluate proactive retrieval systems. We introduce normalized proactive discounted cumulative gain (npDCG) for evaluating these systems, and further provide benchmark results for a wide range of models, including a novel model we developed for this task. We believe that the developed dataset, called ProCIS, paves the path towards developing proactive conversational information seeking systems.
Related papers
- A Survey on Recent Advances in Conversational Data Generation [14.237954885530396]
We offer a systematic and comprehensive review of multi-turn conversational data generation.
We focus on three types of dialogue systems: open domain, task-oriented, and information-seeking.
We examine the evaluation metrics and methods for assessing synthetic conversational data.
arXiv Detail & Related papers (2024-05-12T10:11:12Z) - History-Aware Conversational Dense Retrieval [31.203399110612388]
We propose a History-Aware Conversational Dense Retrieval (HAConvDR) system, which incorporates two ideas: context-denoised query reformulation and automatic mining of supervision signals.
Experiments on two public conversational search datasets demonstrate the improved history modeling capability of HAConvDR.
arXiv Detail & Related papers (2024-01-30T01:24:18Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - Evaluating Mixed-initiative Conversational Search Systems via User
Simulation [9.066817876491053]
We propose a conversational User Simulator, called USi, for automatic evaluation of such search systems.
We show that responses generated by USi are both inline with the underlying information need and comparable to human-generated answers.
arXiv Detail & Related papers (2022-04-17T16:27:33Z) - Analysing Mixed Initiatives and Search Strategies during Conversational
Search [31.63357369175702]
We present a model for conversational search -- from which we instantiate different observed conversational search strategies, where the agent elicits: (i) Feedback-First, or (ii) Feedback-After.
Our analysis reveals that there is no superior or dominant combination, instead it shows that query clarifications are better when asked first, while query suggestions are better when asked after presenting results.
arXiv Detail & Related papers (2021-09-13T13:30:10Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
We introduce an open-retrieval conversational question answering (ORConvQA) setting, where we learn to retrieve evidence from a large collection before extracting answers.
We build an end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader that are all based on Transformers.
arXiv Detail & Related papers (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
We create a suitable dataset, the Search as a Conversation (SaaC) dataset, for the development of pipelines for conversations with search engines.
We also develop a state-of-the-art pipeline for conversations with search engines, the Conversations with Search Engines (CaSE) using this dataset.
CaSE enhances the state-of-the-art by introducing a supporting token identification module and aprior-aware pointer generator.
arXiv Detail & Related papers (2020-04-29T13:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.