Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation
- URL: http://arxiv.org/abs/2405.06605v3
- Date: Tue, 6 Aug 2024 15:20:00 GMT
- Title: Calo-VQ: Vector-Quantized Two-Stage Generative Model in Calorimeter Simulation
- Authors: Qibin Liu, Chase Shimmin, Xiulong Liu, Eli Shlizerman, Shu Li, Shih-Chieh Hsu,
- Abstract summary: We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE)
Our model adopts a two-stage generation strategy: compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens.
Remarkably, our model achieves the generation of calorimeter showers within milliseconds.
- Score: 14.42579802774594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel machine learning method developed for the fast simulation of calorimeter detector response, adapting vector-quantized variational autoencoder (VQ-VAE). Our model adopts a two-stage generation strategy: initially compressing geometry-aware calorimeter data into a discrete latent space, followed by the application of a sequence model to learn and generate the latent tokens. Extensive experimentation on the Calo-challenge dataset underscores the efficiency of our approach, showcasing a remarkable improvement in the generation speed compared with conventional method by a factor of 2000. Remarkably, our model achieves the generation of calorimeter showers within milliseconds. Furthermore, comprehensive quantitative evaluations across various metrics are performed to validate physics performance of generation.
Related papers
- CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation [22.42342223406944]
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge.
We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality.
arXiv Detail & Related papers (2024-10-28T23:28:07Z) - Unifying Simulation and Inference with Normalizing Flows [0.08796261172196743]
We show that two tasks can be unified by using maximum likelihood estimation (MLE) from conditional generative models for energy regression.
Using an ATLAS-like calorimeter simulation, we demonstrate this concept in the context of calorimeter energy calibration.
arXiv Detail & Related papers (2024-04-29T18:00:00Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
Two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.
generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets.
arXiv Detail & Related papers (2023-07-10T08:20:45Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations.
The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods.
We propose an alternative approach to the problem that leverages machine learning.
arXiv Detail & Related papers (2023-06-23T16:45:46Z) - Geometry-aware Autoregressive Models for Calorimeter Shower Simulations [6.01665219244256]
We develop a geometry-aware autoregressive model on a range of calorimeter geometries.
This is a key proof-of-concept step towards building a model that can generalize to new unseen calorimeter geometries.
Such a model can replace the hundreds of generative models used for calorimeter simulation in a Large Hadron Collider experiment.
arXiv Detail & Related papers (2022-12-16T01:45:17Z) - Score-based Generative Models for Calorimeter Shower Simulation [2.0813318162800707]
We introduce CaloScore, a score-based generative model for collider physics applied to calorimeter shower generation.
CaloScore is the first application of a score-based generative model in collider physics and is able to produce high-fidelity calorimeter images for all datasets.
arXiv Detail & Related papers (2022-06-17T18:01:02Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
We present a training and pruning method for ASR based on the connectionist temporal classification (CTC)
We show that a Transformer-CTC model can be pruned in various depth on demand, improving real-time factor from 0.005 to 0.002 on GPU.
arXiv Detail & Related papers (2021-06-17T02:40:18Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable
Embeddings with Generative Priors [52.06292503723978]
Motivated by advances in compressive sensing with generative models, we study the problem of 1-bit compressive sensing with generative models.
We first consider noiseless 1-bit measurements, and provide sample complexity bounds for approximate recovery under i.i.d.Gaussian measurements.
We demonstrate that the Binary $epsilon$-Stable Embedding property, which characterizes the robustness of the reconstruction to measurement errors and noise, also holds for 1-bit compressive sensing with Lipschitz continuous generative models.
arXiv Detail & Related papers (2020-02-05T09:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.