Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes
- URL: http://arxiv.org/abs/2405.06687v1
- Date: Mon, 6 May 2024 18:09:32 GMT
- Title: Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes
- Authors: Damin Zhang, Yi Zhang, Geetanjali Bihani, Julia Rayz,
- Abstract summary: Large language models (LLMs) have been widely integrated into production pipelines, like recruitment and recommendation systems.
This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making.
- Score: 7.718858707298602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the impressive performance in various downstream tasks, large language models (LLMs) have been widely integrated into production pipelines, like recruitment and recommendation systems. A known issue of models trained on natural language data is the presence of human biases, which can impact the fairness of the system. This paper investigates LLMs' behavior with respect to gender stereotypes, in the context of occupation decision making. Our framework is designed to investigate and quantify the presence of gender stereotypes in LLMs' behavior via multi-round question answering. Inspired by prior works, we construct a dataset by leveraging a standard occupation classification knowledge base released by authoritative agencies. We tested three LLMs (RoBERTa-large, GPT-3.5-turbo, and Llama2-70b-chat) and found that all models exhibit gender stereotypes analogous to human biases, but with different preferences. The distinct preferences of GPT-3.5-turbo and Llama2-70b-chat may imply the current alignment methods are insufficient for debiasing and could introduce new biases contradicting the traditional gender stereotypes.
Related papers
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
Large language models (LLM) are pre-trained on extensive corpora to learn facts and human cognition which contain human preferences.
This process can inadvertently lead to these models acquiring biases and prevalent stereotypes in society.
We propose the LSDM (Least Square Debias Method), a knowledge-editing based method for mitigating gender bias in occupational pronouns.
arXiv Detail & Related papers (2024-03-21T13:57:43Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
Large Language Models (LLMs) can generate biased responses.
We propose an indirect probing framework based on conditional generation.
We explore three distinct strategies to disclose explicit and implicit gender bias in LLMs.
arXiv Detail & Related papers (2024-02-17T04:48:55Z) - Towards Auditing Large Language Models: Improving Text-based Stereotype
Detection [5.3634450268516565]
This work introduces i) the Multi-Grain Stereotype dataset, which includes 52,751 instances of gender, race, profession and religion stereotypic text.
We design several experiments to rigorously test the proposed model trained on the novel dataset.
Experiments show that training the model in a multi-class setting can outperform the one-vs-all binary counterpart.
arXiv Detail & Related papers (2023-11-23T17:47:14Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
Large Language Models (LLMs) can generate biased and toxic responses.
We propose a conditional text generation mechanism without the need for predefined gender phrases and stereotypes.
arXiv Detail & Related papers (2023-11-01T05:31:46Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
This paper investigates Large Language Models' behavior with respect to gender stereotypes.
We use a simple paradigm to test the presence of gender bias, building on but differing from WinoBias.
Our contributions in this paper are as follows: (a) LLMs are 3-6 times more likely to choose an occupation that stereotypically aligns with a person's gender; (b) these choices align with people's perceptions better than with the ground truth as reflected in official job statistics; (d) LLMs ignore crucial ambiguities in sentence structure 95% of the time in our study items, but when explicitly prompted, they recognize
arXiv Detail & Related papers (2023-08-28T22:32:05Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.