Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study
- URL: http://arxiv.org/abs/2405.06709v1
- Date: Thu, 9 May 2024 11:29:25 GMT
- Title: Evaluating the Efficacy of AI Techniques in Textual Anonymization: A Comparative Study
- Authors: Dimitris Asimopoulos, Ilias Siniosoglou, Vasileios Argyriou, Sotirios K. Goudos, Konstantinos E. Psannis, Nikoleta Karditsioti, Theocharis Saoulidis, Panagiotis Sarigiannidis,
- Abstract summary: This research focuses on text anonymisation methods, focusing on Conditional Random Fields (CRF), Long Short-Term Memory (LSTM), Embeddings from Language Models (ELMo) and Transformers architecture.
Preliminary results indicate that CRF, LSTM, and ELMo individually outperform traditional methods.
- Score: 5.962542204378336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the digital era, with escalating privacy concerns, it's imperative to devise robust strategies that protect private data while maintaining the intrinsic value of textual information. This research embarks on a comprehensive examination of text anonymisation methods, focusing on Conditional Random Fields (CRF), Long Short-Term Memory (LSTM), Embeddings from Language Models (ELMo), and the transformative capabilities of the Transformers architecture. Each model presents unique strengths since LSTM is modeling long-term dependencies, CRF captures dependencies among word sequences, ELMo delivers contextual word representations using deep bidirectional language models and Transformers introduce self-attention mechanisms that provide enhanced scalability. Our study is positioned as a comparative analysis of these models, emphasising their synergistic potential in addressing text anonymisation challenges. Preliminary results indicate that CRF, LSTM, and ELMo individually outperform traditional methods. The inclusion of Transformers, when compared alongside with the other models, offers a broader perspective on achieving optimal text anonymisation in contemporary settings.
Related papers
- Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
We propose a novel approach that leverages large language models (LLMs) to extend short texts into more detailed sequences before applying topic modeling.
Our method significantly improves short-text topic modeling performance, as demonstrated by extensive experiments on real-world datasets with extreme data sparsity.
arXiv Detail & Related papers (2024-10-04T01:28:56Z) - Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches [5.891554349884001]
This paper compares the performance of transformer-based models and Large Language Models against traditional architectures for text anonymisation.
Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods.
arXiv Detail & Related papers (2024-04-22T12:06:54Z) - Language-Guided World Models: A Model-Based Approach to AI Control [31.9089380929602]
This paper introduces the concept of Language-Guided World Models (LWMs)
LWMs are probabilistic models that can simulate environments by reading texts.
We take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions.
arXiv Detail & Related papers (2024-01-24T03:11:36Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - Capturing Spectral and Long-term Contextual Information for Speech
Emotion Recognition Using Deep Learning Techniques [0.0]
This research proposes an ensemble model that combines Graph Convolutional Networks (GCN) for processing textual data and the HuBERT transformer for analyzing audio signals.
By combining GCN and HuBERT, our ensemble model can leverage the strengths of both approaches.
Results indicate that the combined model can overcome the limitations of traditional methods, leading to enhanced accuracy in recognizing emotions from speech.
arXiv Detail & Related papers (2023-08-04T06:20:42Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Improving the Generalizability of Text-Based Emotion Detection by
Leveraging Transformers with Psycholinguistic Features [27.799032561722893]
We propose approaches for text-based emotion detection that leverage transformer models (BERT and RoBERTa) in combination with Bidirectional Long Short-Term Memory (BiLSTM) networks trained on a comprehensive set of psycholinguistic features.
We find that the proposed hybrid models improve the ability to generalize to out-of-distribution data compared to a standard transformer-based approach.
arXiv Detail & Related papers (2022-12-19T13:58:48Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.