Bridging the Gap: Protocol Towards Fair and Consistent Affect Analysis
- URL: http://arxiv.org/abs/2405.06841v2
- Date: Thu, 16 May 2024 14:23:23 GMT
- Title: Bridging the Gap: Protocol Towards Fair and Consistent Affect Analysis
- Authors: Guanyu Hu, Eleni Papadopoulou, Dimitrios Kollias, Paraskevi Tzouveli, Jie Wei, Xinyu Yang,
- Abstract summary: The increasing integration of machine learning algorithms in daily life underscores the critical need for fairness and equity in their deployment.
Existing databases and methodologies lack uniformity, leading to biased evaluations.
This work addresses these issues by analyzing six affective databases, annotating demographic attributes, and proposing a common protocol for database partitioning.
- Score: 24.737468736951374
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing integration of machine learning algorithms in daily life underscores the critical need for fairness and equity in their deployment. As these technologies play a pivotal role in decision-making, addressing biases across diverse subpopulation groups, including age, gender, and race, becomes paramount. Automatic affect analysis, at the intersection of physiology, psychology, and machine learning, has seen significant development. However, existing databases and methodologies lack uniformity, leading to biased evaluations. This work addresses these issues by analyzing six affective databases, annotating demographic attributes, and proposing a common protocol for database partitioning. Emphasis is placed on fairness in evaluations. Extensive experiments with baseline and state-of-the-art methods demonstrate the impact of these changes, revealing the inadequacy of prior assessments. The findings underscore the importance of considering demographic attributes in affect analysis research and provide a foundation for more equitable methodologies. Our annotations, code and pre-trained models are available at: https://github.com/dkollias/Fair-Consistent-Affect-Analysis
Related papers
- Practical Guide for Causal Pathways and Sub-group Disparity Analysis [1.8974791957167259]
We use causal disparity analysis to quantify and examine the causal interplay between sensitive attributes and outcomes.
Our two-step investigation focuses on datasets where race serves as the sensitive attribute.
We demonstrate that the sub-groups identified by our approach to be affected the most by disparities are the ones with the largest ML classification errors.
arXiv Detail & Related papers (2024-07-02T22:51:01Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.