Finding structure in logographic writing with library learning
- URL: http://arxiv.org/abs/2405.06906v1
- Date: Sat, 11 May 2024 04:23:53 GMT
- Title: Finding structure in logographic writing with library learning
- Authors: Guangyuan Jiang, Matthias Hofer, Jiayuan Mao, Lionel Wong, Joshua B. Tenenbaum, Roger P. Levy,
- Abstract summary: We develop a computational framework for discovering structure in a writing system.
Our framework discovers known linguistic structures in the Chinese writing system.
We demonstrate how a library learning approach may help reveal the fundamental computational principles that underlie the creation of structures in human cognition.
- Score: 55.63800121311418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One hallmark of human language is its combinatoriality -- reusing a relatively small inventory of building blocks to create a far larger inventory of increasingly complex structures. In this paper, we explore the idea that combinatoriality in language reflects a human inductive bias toward representational efficiency in symbol systems. We develop a computational framework for discovering structure in a writing system. Built on top of state-of-the-art library learning and program synthesis techniques, our computational framework discovers known linguistic structures in the Chinese writing system and reveals how the system evolves towards simplification under pressures for representational efficiency. We demonstrate how a library learning approach, utilizing learned abstractions and compression, may help reveal the fundamental computational principles that underlie the creation of combinatorial structures in human cognition, and offer broader insights into the evolution of efficient communication systems.
Related papers
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
We present a novel approach to enhance and exploit LLM reactive capability to address complex problems.
We create a multimodal, knowledge-augmented formal representation of meaning that combines the strengths of large language models with structured semantic representations.
By bridging the gap between unstructured language models and formal semantic structures, our method opens new avenues for tackling intricate problems in natural language understanding and reasoning.
arXiv Detail & Related papers (2024-11-19T17:23:55Z) - Linguistic Structure from a Bottleneck on Sequential Information Processing [5.850665541267672]
We show that natural-language-like systematicity arises in codes that are constrained by predictive information.
We show that human languages are structured to have low predictive information at the levels of phonology, morphology, syntax, and semantics.
arXiv Detail & Related papers (2024-05-20T15:25:18Z) - Engineering A Large Language Model From Scratch [0.0]
Atinuke is a Transformer-based neural network that optimises performance across various language tasks.
It can emulate human-like language by extracting features and learning complex mappings.
System achieves state-of-the-art results on natural language tasks whilst remaining interpretable and robust.
arXiv Detail & Related papers (2024-01-30T04:29:48Z) - LILO: Learning Interpretable Libraries by Compressing and Documenting Code [71.55208585024198]
We introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code.
LILO combines LLM-guided program synthesis with recent algorithmic advances in automated from Stitch.
We find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions.
arXiv Detail & Related papers (2023-10-30T17:55:02Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Incorporating Constituent Syntax for Coreference Resolution [50.71868417008133]
We propose a graph-based method to incorporate constituent syntactic structures.
We also explore to utilise higher-order neighbourhood information to encode rich structures in constituent trees.
Experiments on the English and Chinese portions of OntoNotes 5.0 benchmark show that our proposed model either beats a strong baseline or achieves new state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T07:40:42Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis.
When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization.
arXiv Detail & Related papers (2021-06-18T15:08:47Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Compositional Languages Emerge in a Neural Iterated Learning Model [27.495624644227888]
compositionality enables natural language to represent complex concepts via a structured combination of simpler ones.
We propose an effective neural iterated learning (NIL) algorithm that, when applied to interacting neural agents, facilitates the emergence of a more structured type of language.
arXiv Detail & Related papers (2020-02-04T15:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.