Shadow-Free Membership Inference Attacks: Recommender Systems Are More Vulnerable Than You Thought
- URL: http://arxiv.org/abs/2405.07018v1
- Date: Sat, 11 May 2024 13:52:22 GMT
- Title: Shadow-Free Membership Inference Attacks: Recommender Systems Are More Vulnerable Than You Thought
- Authors: Xiaoxiao Chi, Xuyun Zhang, Yan Wang, Lianyong Qi, Amin Beheshti, Xiaolong Xu, Kim-Kwang Raymond Choo, Shuo Wang, Hongsheng Hu,
- Abstract summary: We propose shadow-free MIAs that directly leverage a user's recommendations for membership inference.
Our attack achieves far better attack accuracy with low false positive rates than baselines.
- Score: 43.490918008927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems have been successfully applied in many applications. Nonetheless, recent studies demonstrate that recommender systems are vulnerable to membership inference attacks (MIAs), leading to the leakage of users' membership privacy. However, existing MIAs relying on shadow training suffer a large performance drop when the attacker lacks knowledge of the training data distribution and the model architecture of the target recommender system. To better understand the privacy risks of recommender systems, we propose shadow-free MIAs that directly leverage a user's recommendations for membership inference. Without shadow training, the proposed attack can conduct MIAs efficiently and effectively under a practice scenario where the attacker is given only black-box access to the target recommender system. The proposed attack leverages an intuition that the recommender system personalizes a user's recommendations if his historical interactions are used by it. Thus, an attacker can infer membership privacy by determining whether the recommendations are more similar to the interactions or the general popular items. We conduct extensive experiments on benchmark datasets across various recommender systems. Remarkably, our attack achieves far better attack accuracy with low false positive rates than baselines while with a much lower computational cost.
Related papers
- Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System [60.719158008403376]
Vulnerability-aware Adversarial Training (VAT) is designed to defend against poisoning attacks in recommender systems.
VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them.
arXiv Detail & Related papers (2024-09-26T02:24:03Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Debiasing Learning for Membership Inference Attacks Against Recommender
Systems [79.48353547307887]
Learned recommender systems may inadvertently leak information about their training data, leading to privacy violations.
We investigate privacy threats faced by recommender systems through the lens of membership inference.
We propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components.
arXiv Detail & Related papers (2022-06-24T17:57:34Z) - Poisoning Deep Learning based Recommender Model in Federated Learning
Scenarios [7.409990425668484]
We design attack approaches targeting deep learning based recommender models in federated learning scenarios.
Our well-designed attacks can effectively poison the target models, and the attack effectiveness sets the state-of-the-art.
arXiv Detail & Related papers (2022-04-26T15:23:05Z) - PipAttack: Poisoning Federated Recommender Systems forManipulating Item
Promotion [58.870444954499014]
A common practice is to subsume recommender systems under the decentralized federated learning paradigm.
We present a systematic approach to backdooring federated recommender systems for targeted item promotion.
arXiv Detail & Related papers (2021-10-21T06:48:35Z) - Membership Inference Attacks Against Recommender Systems [33.66394989281801]
We make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference.
Our attack is on the user-level but not on the data sample-level.
A shadow recommender is established to derive the labeled training data for training the attack model.
arXiv Detail & Related papers (2021-09-16T15:19:19Z) - Data Poisoning Attacks to Deep Learning Based Recommender Systems [26.743631067729677]
We conduct first systematic study of data poisoning attacks against deep learning based recommender systems.
An attacker's goal is to manipulate a recommender system such that the attacker-chosen target items are recommended to many users.
To achieve this goal, our attack injects fake users with carefully crafted ratings to a recommender system.
arXiv Detail & Related papers (2021-01-07T17:32:56Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.