LUCID: A Framework for Reducing False Positives and Inconsistencies Among Container Scanning Tools
- URL: http://arxiv.org/abs/2405.07054v1
- Date: Sat, 11 May 2024 16:58:28 GMT
- Title: LUCID: A Framework for Reducing False Positives and Inconsistencies Among Container Scanning Tools
- Authors: Md Sadun Haq, Ali Saman Tosun, Turgay Korkmaz,
- Abstract summary: This paper provides a fully functional framework named LUCID that can reduce false positives and inconsistencies provided by multiple scanning tools.
Our results show that our framework can reduce inconsistencies by 70%.
We also create a Dynamic Classification component that can successfully classify and predict the different severity levels with an accuracy of 84%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Containerization has emerged as a revolutionary technology in the software development and deployment industry. Containers offer a portable and lightweight solution that allows for packaging applications and their dependencies systematically and efficiently. In addition, containers offer faster deployment and near-native performance with isolation and security drawbacks compared to Virtual Machines. To address the security issues, scanning tools that scan containers for preexisting vulnerabilities have been developed, but they suffer from false positives. Moreover, using different scanning tools to scan the same container provides different results, which leads to inconsistencies and confusion. Limited work has been done to address these issues. This paper provides a fully functional and extensible framework named LUCID that can reduce false positives and inconsistencies provided by multiple scanning tools. We use a database-centric approach and perform query-based analysis, to pinpoint the causes for inconsistencies. Our results show that our framework can reduce inconsistencies by 70%. The framework has been tested on both Intel64/AMD64 and ARM architecture. We also create a Dynamic Classification component that can successfully classify and predict the different severity levels with an accuracy of 84%. We believe this paper will raise awareness regarding security in container technologies and enable container scanning companies to improve their tool to provide better and more consistent results.
Related papers
- Malware Detection in Docker Containers: An Image is Worth a Thousand Logs [10.132362061193954]
We introduce a method to identify compromised containers through machine learning analysis of their file systems.
We cast the entire software containers into large RGB images via their tarball representations, and propose to use established Convolutional Neural Network architectures on a streaming, patch-based manner.
Our method detects more malware and achieves higher F1 and Recall scores than all individual and ensembles of VirusTotal engines, demonstrating its effectiveness and setting a new standard for identifying malware-compromised software containers.
arXiv Detail & Related papers (2025-04-04T07:38:16Z) - Vexed by VEX tools: Consistency evaluation of container vulnerability scanners [0.0]
This paper presents a study that analyzed state-of-the-art vulnerability scanning tools applied to containers.
We have focused the work on tools following the Vulnerability Exploitability eXchange (VEX) format.
arXiv Detail & Related papers (2025-03-18T16:22:43Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.
We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.
We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - An Incremental Unified Framework for Small Defect Inspection [38.760135052751714]
We present the Incremental Unified Framework (IUF), which can reduce the feature conflict problem when continuously integrating new objects in the pipeline.
Employing a state-of-the-art transformer, we introduce Object-Aware Self-Attention (OASA) to delineate distinct semantic boundaries.
Our approach achieves state-of-the-art performance, proving indispensable for dynamic and scalable industrial inspections.
arXiv Detail & Related papers (2023-12-14T13:22:18Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
We present a novel approach to detect vulnerable clones in the Maven repository.
We retrieve over 53k potential vulnerable clones from Maven Central.
We detect 727 confirmed vulnerable clones and synthesize a testable proof-of-vulnerability project for each of those.
arXiv Detail & Related papers (2023-06-08T20:14:46Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
We propose a reliable object detection and segmentation system with MultiModal Redundancy (MMRNet)
This is the first system that introduces the concept of multimodal redundancy to address sensor failure issues during deployment.
We present a new label-free multi-modal consistency (MC) score that utilizes the output from all modalities to measure the overall system output reliability and uncertainty.
arXiv Detail & Related papers (2022-10-19T19:15:07Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Detecting Security Fixes in Open-Source Repositories using Static Code
Analyzers [8.716427214870459]
We study the extent to which the output of off-the-shelf static code analyzers can be used as a source of features to represent commits in Machine Learning (ML) applications.
We investigate how such features can be used to construct embeddings and train ML models to automatically identify source code commits that contain vulnerability fixes.
We find that the combination of our method with commit2vec represents a tangible improvement over the state of the art in the automatic identification of commits that fix vulnerabilities.
arXiv Detail & Related papers (2021-05-07T15:57:17Z) - Scalable Microservice Forensics and Stability Assessment Using
Variational Autoencoders [6.225019476223629]
We present a deep learning based approach to containerized application runtime stability analysis.
The approach applies variational autoencoders (VAEs) to learn the stable patterns of container images, and then instantiates these container-specific VAEs to implement stability detection and adaptive forensics publishing.
We evaluate the VAE-based stability detection technique against two attacks, CPUMiner and HTTP-flood attack, finding that it is effective in isolating both anomalies.
arXiv Detail & Related papers (2021-04-23T18:51:41Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.