MAML MOT: Multiple Object Tracking based on Meta-Learning
- URL: http://arxiv.org/abs/2405.07272v3
- Date: Fri, 23 Aug 2024 12:23:56 GMT
- Title: MAML MOT: Multiple Object Tracking based on Meta-Learning
- Authors: Jiayi Chen, Chunhua Deng,
- Abstract summary: MAML MOT is a meta-learning-based training approach for multi-object tracking.
We introduce MAML MOT, a meta-learning-based training approach for multi-object tracking.
- Score: 7.892321926673001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of video analysis technology, the multi-object tracking (MOT) problem in complex scenes involving pedestrians is gaining increasing importance. This challenge primarily involves two key tasks: pedestrian detection and re-identification. While significant progress has been achieved in pedestrian detection tasks in recent years, enhancing the effectiveness of re-identification tasks remains a persistent challenge. This difficulty arises from the large total number of pedestrian samples in multi-object tracking datasets and the scarcity of individual instance samples. Motivated by recent rapid advancements in meta-learning techniques, we introduce MAML MOT, a meta-learning-based training approach for multi-object tracking. This approach leverages the rapid learning capability of meta-learning to tackle the issue of sample scarcity in pedestrian re-identification tasks, aiming to improve the model's generalization performance and robustness. Experimental results demonstrate that the proposed method achieves high accuracy on mainstream datasets in the MOT Challenge. This offers new perspectives and solutions for research in the field of pedestrian multi-object tracking.
Related papers
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
Multi-object tracking is advancing through two dominant paradigms: traditional tracking by detection and newly emerging tracking by query.
We propose the tracking-by-detection-and-query paradigm, which is achieved by a Learnable Associator.
Compared to tracking-by-query models, LAID achieves competitive tracking accuracy with notably higher training efficiency.
arXiv Detail & Related papers (2024-11-09T14:38:08Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Multi-target tracking for video surveillance using deep affinity
network: a brief review [0.0]
Multi-target tracking (MTT) for video surveillance is one of the important and challenging tasks.
Deep learning models are known to function like the human brain.
arXiv Detail & Related papers (2021-10-29T10:44:26Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Multi-object tracking with self-supervised associating network [5.947279761429668]
We propose a novel self-supervised learning method using a lot of short videos which has no human labeling.
Despite the re-identification network is trained in a self-supervised manner, it achieves the state-of-the-art performance of MOTA 62.0% and IDF1 62.6% on the MOT17 test benchmark.
arXiv Detail & Related papers (2020-10-26T08:48:23Z) - TubeTK: Adopting Tubes to Track Multi-Object in a One-Step Training
Model [51.14840210957289]
Multi-object tracking is a fundamental vision problem that has been studied for a long time.
Despite the success of Tracking by Detection (TBD), this two-step method is too complicated to train in an end-to-end manner.
We propose a concise end-to-end model TubeTK which only needs one step training by introducing the bounding-tube" to indicate temporal-spatial locations of objects in a short video clip.
arXiv Detail & Related papers (2020-06-10T06:45:05Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
We develop a novel meta-regularization objective using it cyclical annealing schedule and it maximum mean discrepancy (MMD) criterion.
The experimental results show that our approach substantially outperforms standard meta-learning algorithms.
arXiv Detail & Related papers (2020-03-04T04:43:16Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.