Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework
- URL: http://arxiv.org/abs/2405.07441v3
- Date: Thu, 5 Sep 2024 14:17:48 GMT
- Title: Reducing Spatial Discretization Error on Coarse CFD Simulations Using an OpenFOAM-Embedded Deep Learning Framework
- Authors: Jesus Gonzalez-Sieiro, David Pardo, Vincenzo Nava, Victor M. Calo, Markus Towara,
- Abstract summary: We propose a method for reducing the spatial discretization error of fluid dynamics problems by enhancing the quality of simulations using deep learning.
We feed the model with fine-grid data after projecting it to the coarse-grid discretization.
We substitute the default differencing scheme for the convection term by a feed-forward neural network that interpolates velocities from cell centers to face values to produce velocities that approximate the down-sampled fine-grid data well.
- Score: 0.7223509567556214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for reducing the spatial discretization error of coarse computational fluid dynamics (CFD) problems by enhancing the quality of low-resolution simulations using deep learning. We feed the model with fine-grid data after projecting it to the coarse-grid discretization. We substitute the default differencing scheme for the convection term by a feed-forward neural network that interpolates velocities from cell centers to face values to produce velocities that approximate the down-sampled fine-grid data well. The deep learning framework incorporates the open-source CFD code OpenFOAM, resulting in an end-to-end differentiable model. We automatically differentiate the CFD physics using a discrete adjoint code version. We present a fast communication method between TensorFlow (Python) and OpenFOAM (c++) that accelerates the training process. We applied the model to the flow past a square cylinder problem, reducing the error from 120% to 25% in the velocity for simulations inside the training distribution compared to the traditional solver using an x8 coarser mesh. For simulations outside the training distribution, the error reduction in the velocities was about 50%. The training is affordable in terms of time and data samples since the architecture exploits the local features of the physics.
Related papers
- Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators [78.64101336150419]
Predicting the long-term behavior of chaotic systems is crucial for various applications such as climate modeling.
An alternative approach to such a full-resolved simulation is using a coarse grid and then correcting its errors through a temporalittext model.
We propose an alternative end-to-end learning approach using a physics-informed neural operator (PINO) that overcomes this limitation.
arXiv Detail & Related papers (2024-08-09T17:05:45Z) - Instant Complexity Reduction in CNNs using Locality-Sensitive Hashing [50.79602839359522]
We propose HASTE (Hashing for Tractable Efficiency), a parameter-free and data-free module that acts as a plug-and-play replacement for any regular convolution module.
We are able to drastically compress latent feature maps without sacrificing much accuracy by using locality-sensitive hashing (LSH)
In particular, we are able to instantly drop 46.72% of FLOPs while only losing 1.25% accuracy by just swapping the convolution modules in a ResNet34 on CIFAR-10 for our HASTE module.
arXiv Detail & Related papers (2023-09-29T13:09:40Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
We present simulation-free score and flow matching ([SF]$2$M)
Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous flows.
Notably, [SF]$2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks simulated data.
arXiv Detail & Related papers (2023-07-07T15:42:35Z) - Improving CFD simulations by local machine-learned correction [0.0]
High-fidelity computational fluid dynamics (CFD) simulations for design space explorations can be exceedingly expensive.
This computational cost/accuracy trade-off is a major challenge for modern CFD simulations.
We propose a method that uses a trained machine learning model that has learned to predict the discretization error.
arXiv Detail & Related papers (2023-04-28T22:20:42Z) - MeshDQN: A Deep Reinforcement Learning Framework for Improving Meshes in
Computational Fluid Dynamics [0.0]
MeshDQN is developed as a general purpose deep reinforcement learning framework to iteratively coarsen meshes.
A graph neural network based deep Q network is used to select meshes for removal and solution is used to bypass expensive simulations.
MeshDQN successfully improves meshes for two 2D airfoils.
arXiv Detail & Related papers (2022-12-02T20:22:15Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Deep Surrogate for Direct Time Fluid Dynamics [44.62475518267084]
Graph Neural Networks (GNN) can address the specificity of the irregular meshes commonly used in CFD simulations.
We present our ongoing work to design a novel direct time GNN architecture for irregular meshes.
arXiv Detail & Related papers (2021-12-16T10:08:20Z) - Finite volume method network for acceleration of unsteady computational
fluid dynamics: non-reacting and reacting flows [0.0]
A neural network model with a unique network architecture and physics-informed loss function was developed to accelerate CFD simulations.
Under the reacting flow dataset, the computational speed of this network model was measured to be about 10 times faster than that of the CFD solver.
arXiv Detail & Related papers (2021-05-07T15:33:49Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.