Unconditionally decoherence-free quantum error mitigation by density matrix vectorization
- URL: http://arxiv.org/abs/2405.07592v4
- Date: Fri, 19 Jul 2024 14:10:03 GMT
- Title: Unconditionally decoherence-free quantum error mitigation by density matrix vectorization
- Authors: Zhong-Xia Shang, Zi-Han Chen, Cai-Sheng Cheng,
- Abstract summary: We give a new paradigm of quantum error mitigation based on the vectorization of density matrices.
Our proposal directly changes the way of encoding information and maps the density matrices of noisy quantum states to noiseless pure states.
Our protocol requires no knowledge of the noise model, no ability to tune the noise strength, and no ancilla qubits for complicated controlled unitaries.
- Score: 4.2630430280861376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fighting against noise is crucial for NISQ devices to demonstrate practical quantum applications. In this work, we give a new paradigm of quantum error mitigation based on the vectorization of density matrices. Different from the ideas of existing quantum error mitigation methods that try to distill noiseless information from noisy quantum states, our proposal directly changes the way of encoding information and maps the density matrices of noisy quantum states to noiseless pure states, which is realized by a novel and NISQ-friendly measurement protocol and a classical post-processing procedure. Our protocol requires no knowledge of the noise model, no ability to tune the noise strength, and no ancilla qubits for complicated controlled unitaries. Under our encoding, NISQ devices are always preparing pure quantum states which are highly desired resources for variational quantum algorithms to have good performance in many tasks. We show how this protocol can be well-fitted into variational quantum algorithms. We give several concrete ansatz constructions that are suitable for our proposal and do theoretical analysis on the sampling complexity, the expressibility, and the trainability. We also give a discussion on how this protocol is influenced by large noise and how it can be well combined with other quantum error mitigation protocols. The effectiveness of our proposal is demonstrated by various numerical experiments.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Leveraging hardware-control imperfections for error mitigation via
generalized quantum subspace [0.8399688944263843]
In the era of quantum computing without full fault-tolerance, it is essential to suppress noise effects via the quantum error mitigation techniques to enhance the computational power of the quantum devices.
One of the most effective noise-agnostic error mitigation schemes is the generalized quantum subspace expansion (GSE) method.
We propose the fault-subspace method, which constructs an error-mitigated quantum state with copies of quantum states with different noise levels.
arXiv Detail & Related papers (2023-03-14T07:01:30Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - NISQ: Error Correction, Mitigation, and Noise Simulation [0.39146761527401414]
Error-correcting codes were invented to correct errors on noisy communication channels.
Quantum error correction (QEC) may have a wider range of uses, including information transmission, quantum simulation/computation, and fault-tolerance.
This work examines the task of Quantum Error Mitigation (QEM) from several perspectives.
arXiv Detail & Related papers (2021-11-03T16:55:47Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum Noise Sensing by generating Fake Noise [5.8010446129208155]
We propose a framework to characterize noise in a realistic quantum device.
Key idea is to learn about the noise by mimicking it in a way that one cannot distinguish between the real (to be sensed) and the fake (generated) one.
We find that, when applied to the benchmarking case of Pauli channels, the SuperQGAN protocol is able to learn the associated error rates even in the case of spatially and temporally correlated noise.
arXiv Detail & Related papers (2021-07-19T09:42:37Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.