Efficient Matrix Factorization Via Householder Reflections
- URL: http://arxiv.org/abs/2405.07649v2
- Date: Fri, 04 Oct 2024 07:42:20 GMT
- Title: Efficient Matrix Factorization Via Householder Reflections
- Authors: Anirudh Dash, Aditya Siripuram,
- Abstract summary: We show that the exact recovery of the factors $mathbfH$ and $mathbfX$ from $mathbfY$ is guaranteed with $Omega$ columns in $mathbfY$.
We hope the techniques in this work help in developing alternate algorithms for dictionary learning.
- Score: 2.3326951882644553
- License:
- Abstract: Motivated by orthogonal dictionary learning problems, we propose a novel method for matrix factorization, where the data matrix $\mathbf{Y}$ is a product of a Householder matrix $\mathbf{H}$ and a binary matrix $\mathbf{X}$. First, we show that the exact recovery of the factors $\mathbf{H}$ and $\mathbf{X}$ from $\mathbf{Y}$ is guaranteed with $\Omega(1)$ columns in $\mathbf{Y}$ . Next, we show approximate recovery (in the $l\infty$ sense) can be done in polynomial time($O(np)$) with $\Omega(\log n)$ columns in $\mathbf{Y}$ . We hope the techniques in this work help in developing alternate algorithms for orthogonal dictionary learning.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Structured Semidefinite Programming for Recovering Structured
Preconditioners [41.28701750733703]
We give an algorithm which, given positive definite $mathbfK in mathbbRd times d$ with $mathrmnnz(mathbfK)$ nonzero entries, computes an $epsilon$-optimal diagonal preconditioner in time.
We attain our results via new algorithms for a class of semidefinite programs we call matrix-dictionary approximation SDPs.
arXiv Detail & Related papers (2023-10-27T16:54:29Z) - A Fast Optimization View: Reformulating Single Layer Attention in LLM
Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time [7.613259578185218]
We focus on giving a provable guarantee for the one-layer attention network objective function $L(X,Y).
In a multi-layer LLM network, the matrix $B in mathbbRn times d2$ can be viewed as the output of a layer.
We provide an iterative algorithm to train loss function $L(X,Y)$ up $epsilon$ that runs in $widetildeO( (cal T_mathrmmat(n,d) + d
arXiv Detail & Related papers (2023-09-14T04:23:40Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
We consider the sparsification of the attention problem.
For any super large feature dimension, we can reduce it down to the size nearly linear in length of sentence.
arXiv Detail & Related papers (2023-04-10T05:52:38Z) - A General Algorithm for Solving Rank-one Matrix Sensing [15.543065204102714]
The goal of matrix sensing is to recover a matrix $A_star in mathbbRn times n$, based on a sequence of measurements.
In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem.
arXiv Detail & Related papers (2023-03-22T04:07:26Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
In compressed sensing, the restricted isometry property (RIP) on $M times N$ sensing matrices guarantees efficient reconstruction of sparse vectors.
We investigate the exact average-case time complexity of certifying the RIP property for $Mtimes N$ matrices with i.i.d. $mathcalN(0,1/M)$ entries.
arXiv Detail & Related papers (2020-05-22T16:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.