Backdoor Removal for Generative Large Language Models
- URL: http://arxiv.org/abs/2405.07667v1
- Date: Mon, 13 May 2024 11:53:42 GMT
- Title: Backdoor Removal for Generative Large Language Models
- Authors: Haoran Li, Yulin Chen, Zihao Zheng, Qi Hu, Chunkit Chan, Heshan Liu, Yangqiu Song,
- Abstract summary: generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning.
A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data.
We present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs.
- Score: 42.19147076519423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With rapid advances, generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning. Yet, language models' inherent vulnerabilities may be exacerbated due to increased accessibility and unrestricted model training on massive textual data from the Internet. A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data. Backdoored LLMs behave innocuously for normal queries and generate harmful responses when the backdoor trigger is activated. Despite significant efforts paid to LLMs' safety issues, LLMs are still struggling against backdoor attacks. As Anthropic recently revealed, existing safety training strategies, including supervised fine-tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), fail to revoke the backdoors once the LLM is backdoored during the pre-training stage. In this paper, we present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs. We initially propose Overwrite Supervised Fine-tuning (OSFT) for effective backdoor removal when the trigger is known. Then, to handle the scenarios where the trigger patterns are unknown, we integrate OSFT into our two-stage framework, SANDE. Unlike previous works that center on the identification of backdoors, our safety-enhanced LLMs are able to behave normally even when the exact triggers are activated. We conduct comprehensive experiments to show that our proposed SANDE is effective against backdoor attacks while bringing minimal harm to LLMs' powerful capability without any additional access to unbackdoored clean models. We will release the reproducible code.
Related papers
- Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
Large Language Models (LLMs) have significantly impacted various domains, including Web search, healthcare, and software development.
As these models scale, they become more vulnerable to cybersecurity risks, particularly backdoor attacks.
arXiv Detail & Related papers (2024-09-30T06:31:36Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
Large language models (LLMs) have demonstrated remarkable capabilities.
Their powerful generative abilities enable flexible responses based on various queries or instructions.
This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects.
arXiv Detail & Related papers (2024-08-20T10:44:29Z) - TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models [16.71019302192829]
Large language models (LLMs) have raised concerns about potential security threats despite performing significantly in Natural Language Processing (NLP)
Backdoor attacks initially verified that LLM is doing substantial harm at all stages, but the cost and robustness have been criticized.
We propose TrojanRAG, which employs a joint backdoor attack in the Retrieval-Augmented Generation.
arXiv Detail & Related papers (2024-05-22T07:21:32Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
We take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents.
Specifically, compared with traditional backdoor attacks on LLMs that are only able to manipulate the user inputs and model outputs, agent backdoor attacks exhibit more diverse and covert forms.
arXiv Detail & Related papers (2024-02-17T06:48:45Z) - BadChain: Backdoor Chain-of-Thought Prompting for Large Language Models [15.381273199132433]
BadChain is the first backdoor attack against large language models (LLMs) employing chain-of-thought (COT) prompting.
We show the effectiveness of BadChain for two COT strategies and six benchmark tasks.
BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.
arXiv Detail & Related papers (2024-01-20T04:53:35Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
Recent research has exposed the susceptibility of pretrained language models (PLMs) to backdoor attacks.
We propose and integrate a honeypot module into the original PLM to absorb backdoor information exclusively.
Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features.
arXiv Detail & Related papers (2023-10-28T08:21:16Z) - Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution [57.51117978504175]
Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks.
Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated.
We present invisible backdoors that are activated by a learnable combination of word substitution.
arXiv Detail & Related papers (2021-06-11T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.