Active Learning with Simple Questions
- URL: http://arxiv.org/abs/2405.07937v2
- Date: Mon, 10 Jun 2024 15:42:50 GMT
- Title: Active Learning with Simple Questions
- Authors: Vasilis Kontonis, Mingchen Ma, Christos Tzamos,
- Abstract summary: We consider an active learning setting where a learner is presented with a pool S of n unlabeled examples belonging to a domain X.
We study more general region queries that allow the learner to pick a subset of the domain T subset X and a target label y.
We show that given any hypothesis class H with VC dimension d, one can design a region query family Q with VC dimension O(d) such that for every set of n examples S subset X and every h* in H, a learner can submit O(d log n) queries from Q to a
- Score: 20.239213248652376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an active learning setting where a learner is presented with a pool S of n unlabeled examples belonging to a domain X and asks queries to find the underlying labeling that agrees with a target concept h^* \in H. In contrast to traditional active learning that queries a single example for its label, we study more general region queries that allow the learner to pick a subset of the domain T \subset X and a target label y and ask a labeler whether h^*(x) = y for every example in the set T \cap S. Such more powerful queries allow us to bypass the limitations of traditional active learning and use significantly fewer rounds of interactions to learn but can potentially lead to a significantly more complex query language. Our main contribution is quantifying the trade-off between the number of queries and the complexity of the query language used by the learner. We measure the complexity of the region queries via the VC dimension of the family of regions. We show that given any hypothesis class H with VC dimension d, one can design a region query family Q with VC dimension O(d) such that for every set of n examples S \subset X and every h^* \in H, a learner can submit O(d log n) queries from Q to a labeler and perfectly label S. We show a matching lower bound by designing a hypothesis class H with VC dimension d and a dataset S \subset X of size n such that any learning algorithm using any query class with VC dimension less than O(d) must make poly(n) queries to label S perfectly. Finally, we focus on well-studied hypothesis classes including unions of intervals, high-dimensional boxes, and d-dimensional halfspaces, and obtain stronger results. In particular, we design learning algorithms that (i) are computationally efficient and (ii) work even when the queries are not answered based on the learner's pool of examples S but on some unknown superset L of S
Related papers
- Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Learning to Learn in Interactive Constraint Acquisition [7.741303298648302]
In Constraint Acquisition (CA), the goal is to assist the user by automatically learning the model.
In (inter)active CA, this is done by interactively posting queries to the user.
We propose to use probabilistic classification models to guide interactive CA to generate more promising queries.
arXiv Detail & Related papers (2023-12-17T19:12:33Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
We show and investigate the capabilities of smaller self-adaptive LMs, only with unlabeled test data.
Our proposed self-adaption strategy demonstrates significant performance improvements on benchmark QA datasets.
arXiv Detail & Related papers (2023-10-20T06:49:32Z) - Agnostic Multi-Group Active Learning [24.97598179536084]
We consider a variant of this problem from the perspective of active learning, where the learner is endowed with the power to decide which examples are labeled from each distribution in the collection.
Our main challenge is that standard active learning techniques such as disagreement-based active learning do not directly apply to the multi-group learning objective.
We modify existing algorithms to provide a consistent active learning algorithm for an agnostic formulation of multi-group learning.
arXiv Detail & Related papers (2023-06-02T21:24:13Z) - Learning Hidden Markov Models Using Conditional Samples [72.20944611510198]
This paper is concerned with the computational complexity of learning the Hidden Markov Model (HMM)
In this paper, we consider an interactive access model, in which the algorithm can query for samples from the conditional distributions of the HMMs.
Specifically, we obtain efficient algorithms for learning HMMs in settings where we have query access to the exact conditional probabilities.
arXiv Detail & Related papers (2023-02-28T16:53:41Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Partial Queries for Constraint Acquisition [40.280429279882]
We learn constraint networks by asking the user partial queries.
That is, we ask the user to classify assignments to subsets of the variables as positive or negative.
We provide an algorithm, called QUACQ, that, given a negative example, focuses onto a constraint of the target network in a number of queries logarithmic in the size of the example.
arXiv Detail & Related papers (2020-03-14T14:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.