ReActXGB: A Hybrid Binary Convolutional Neural Network Architecture for Improved Performance and Computational Efficiency
- URL: http://arxiv.org/abs/2405.08020v1
- Date: Sat, 11 May 2024 16:38:50 GMT
- Title: ReActXGB: A Hybrid Binary Convolutional Neural Network Architecture for Improved Performance and Computational Efficiency
- Authors: Po-Hsun Chu, Ching-Han Chen,
- Abstract summary: We propose a hybrid model named ReActXGB, where we replace the fully convolutional layer of ReActNet-A with XGBoost.
This modification targets to narrow the performance gap between BCNNs and real-valued networks while maintaining lower computational costs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary convolutional neural networks (BCNNs) provide a potential solution to reduce the memory requirements and computational costs associated with deep neural networks (DNNs). However, achieving a trade-off between performance and computational resources remains a significant challenge. Furthermore, the fully connected layer of BCNNs has evolved into a significant computational bottleneck. This is mainly due to the conventional practice of excluding the input layer and fully connected layer from binarization to prevent a substantial loss in accuracy. In this paper, we propose a hybrid model named ReActXGB, where we replace the fully convolutional layer of ReActNet-A with XGBoost. This modification targets to narrow the performance gap between BCNNs and real-valued networks while maintaining lower computational costs. Experimental results on the FashionMNIST benchmark demonstrate that ReActXGB outperforms ReActNet-A by 1.47% in top-1 accuracy, along with a reduction of 7.14% in floating-point operations (FLOPs) and 1.02% in model size.
Related papers
- A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neural Network [5.144744286453014]
A&B BNN is proposed to remove part of the multiplication operations in a traditional BNN and replace the rest with an equal number of bit operations.
The mask layer can be removed during inference by leveraging the intrinsic characteristics of BNN.
The quantized RPReLU structure enables more efficient bit operations by constraining its slope to be integer powers of 2.
arXiv Detail & Related papers (2024-03-06T14:28:49Z) - Boosting Binary Neural Networks via Dynamic Thresholds Learning [21.835748440099586]
We introduce DySign to reduce information loss and boost representative capacity of BNNs.
For DCNNs, DyBCNNs based on two backbones achieve 71.2% and 67.4% top1-accuracy on ImageNet dataset.
For ViTs, DyCCT presents the superiority of the convolutional embedding layer in fully binarized ViTs and 56.1% on the ImageNet dataset.
arXiv Detail & Related papers (2022-11-04T07:18:21Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Elastic-Link for Binarized Neural Network [9.83865304744923]
"Elastic-Link" (EL) module enrich information flow within a BNN by adaptively adding real-valued input features to the subsequent convolutional output features.
EL produces a significant improvement on the challenging large-scale ImageNet dataset.
With the integration of ReActNet, it yields a new state-of-the-art result of 71.9% top-1 accuracy.
arXiv Detail & Related papers (2021-12-19T13:49:29Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - ActNN: Reducing Training Memory Footprint via 2-Bit Activation
Compressed Training [68.63354877166756]
ActNN is a memory-efficient training framework that stores randomly quantized activations for back propagation.
ActNN reduces the memory footprint of the activation by 12x, and it enables training with a 6.6x to 14x larger batch size.
arXiv Detail & Related papers (2021-04-29T05:50:54Z) - FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with
Fractional Activations [20.218382369944152]
Binary neural networks (BNNs) have 1-bit weights and activations.
BNNs tend to produce a much lower accuracy on realistic datasets such as ImageNet.
This work proposes FracBNN, which exploits fractional activations to substantially improve the accuracy of BNNs.
arXiv Detail & Related papers (2020-12-22T17:49:30Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
We show that binarized convolution process owns an increasing linearity towards the target of minimizing such error, which in turn hampers BNN's discriminative ability.
We re-investigate and tune proper non-linear modules to fix that contradiction, leading to a strong baseline which achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-10-19T08:11:48Z) - Efficient Integer-Arithmetic-Only Convolutional Neural Networks [87.01739569518513]
We replace conventional ReLU with Bounded ReLU and find that the decline is due to activation quantization.
Our integer networks achieve equivalent performance as the corresponding FPN networks, but have only 1/4 memory cost and run 2x faster on modern GPU.
arXiv Detail & Related papers (2020-06-21T08:23:03Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.