Autonomous Sparse Mean-CVaR Portfolio Optimization
- URL: http://arxiv.org/abs/2405.08047v1
- Date: Mon, 13 May 2024 15:16:22 GMT
- Title: Autonomous Sparse Mean-CVaR Portfolio Optimization
- Authors: Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, Cheng Li,
- Abstract summary: We propose an innovative autonomous sparse mean-CVaR portfolio model, capable of approximating the original model with arbitrary accuracy.
We then propose a proximal alternating linearized minimization algorithm, coupled with a nested fixed-point proximity algorithm (both convergent) to iteratively solve the model.
- Score: 6.358973724565783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The $\ell_0$-constrained mean-CVaR model poses a significant challenge due to its NP-hard nature, typically tackled through combinatorial methods characterized by high computational demands. From a markedly different perspective, we propose an innovative autonomous sparse mean-CVaR portfolio model, capable of approximating the original $\ell_0$-constrained mean-CVaR model with arbitrary accuracy. The core idea is to convert the $\ell_0$ constraint into an indicator function and subsequently handle it through a tailed approximation. We then propose a proximal alternating linearized minimization algorithm, coupled with a nested fixed-point proximity algorithm (both convergent), to iteratively solve the model. Autonomy in sparsity refers to retaining a significant portion of assets within the selected asset pool during adjustments in pool size. Consequently, our framework offers a theoretically guaranteed approximation of the $\ell_0$-constrained mean-CVaR model, improving computational efficiency while providing a robust asset selection scheme.
Related papers
- Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization [23.029511473335145]
This paper focuses on constrained DRO, which has an explicit characterization of the robustness of its performance.
The complexity of our algorithm at each $chi2$-divergences point$ is independent overall dataset size, and thus is suitable for large-scale applications.
arXiv Detail & Related papers (2024-04-01T15:56:58Z) - CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver [4.364088891019632]
We propose an RNN-based efficient Ising model solver, the Criticality-ordered Recurrent Mean Field (CoRMF)
By leveraging the approximated tree structure of the underlying Ising graph, the newly-obtained criticality order enables the unification between variational mean-field and RNN.
CoRFM solves the Ising problems in a self-train fashion without data/evidence, and the inference tasks can be executed by directly sampling from RNN.
arXiv Detail & Related papers (2024-03-05T16:55:06Z) - Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games [66.2085181793014]
We show that a model-free stage-based Q-learning algorithm can enjoy the same optimality in the $H$ dependence as model-based algorithms.
Our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions.
arXiv Detail & Related papers (2023-08-17T08:34:58Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal [70.15267479220691]
We consider and analyze the sample complexity of model reinforcement learning with a generative variance-free model.
Our analysis shows that it is nearly minimax-optimal for finding an $varepsilon$-optimal policy when $varepsilon$ is sufficiently small.
arXiv Detail & Related papers (2022-05-27T19:39:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Kidney Exchange with Inhomogeneous Edge Existence Uncertainty [33.17472228570093]
We aim to maximize a matched cycle and chain packing problem, where we aim to identify structures in a directed graph to the edge of failure.
Our approaches on data from the United for Sharing (SUNO) provides better performance with the same weights as as an SAA-based method.
arXiv Detail & Related papers (2020-07-07T04:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.