DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation
- URL: http://arxiv.org/abs/2405.08055v1
- Date: Mon, 13 May 2024 17:59:51 GMT
- Title: DiffTF++: 3D-aware Diffusion Transformer for Large-Vocabulary 3D Generation
- Authors: Ziang Cao, Fangzhou Hong, Tong Wu, Liang Pan, Ziwei Liu,
- Abstract summary: We introduce a diffusion-based feed-forward framework to address challenges with a single model.
Building upon our 3D-aware Diffusion model with TransFormer, we propose a stronger version for 3D generation, i.e., DiffTF++.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate the effectiveness of our proposed modules.
- Score: 53.20147419879056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating diverse and high-quality 3D assets automatically poses a fundamental yet challenging task in 3D computer vision. Despite extensive efforts in 3D generation, existing optimization-based approaches struggle to produce large-scale 3D assets efficiently. Meanwhile, feed-forward methods often focus on generating only a single category or a few categories, limiting their generalizability. Therefore, we introduce a diffusion-based feed-forward framework to address these challenges with a single model. To handle the large diversity and complexity in geometry and texture across categories efficiently, we 1) adopt improved triplane to guarantee efficiency; 2) introduce the 3D-aware transformer to aggregate the generalized 3D knowledge with specialized 3D features; and 3) devise the 3D-aware encoder/decoder to enhance the generalized 3D knowledge. Building upon our 3D-aware Diffusion model with TransFormer, DiffTF, we propose a stronger version for 3D generation, i.e., DiffTF++. It boils down to two parts: multi-view reconstruction loss and triplane refinement. Specifically, we utilize multi-view reconstruction loss to fine-tune the diffusion model and triplane decoder, thereby avoiding the negative influence caused by reconstruction errors and improving texture synthesis. By eliminating the mismatch between the two stages, the generative performance is enhanced, especially in texture. Additionally, a 3D-aware refinement process is introduced to filter out artifacts and refine triplanes, resulting in the generation of more intricate and reasonable details. Extensive experiments on ShapeNet and OmniObject3D convincingly demonstrate the effectiveness of our proposed modules and the state-of-the-art 3D object generation performance with large diversity, rich semantics, and high quality.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
In this paper, we explore the design space of text-to-3D models.
We significantly improve multi-view generation by considering video instead of image generators.
Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x.
arXiv Detail & Related papers (2024-02-13T18:59:51Z) - BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion [0.0]
BoostDream is a highly efficient plug-and-play 3D refining method designed to transform coarse 3D assets into high-quality.
We introduce 3D model distillation that fits differentiable representations from the 3D assets obtained through feed-forward generation.
A novel multi-view SDS loss is designed, which utilizes a multi-view aware 2D diffusion model to refine the 3D assets.
arXiv Detail & Related papers (2024-01-30T05:59:00Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data.
We propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously.
arXiv Detail & Related papers (2023-12-11T18:59:18Z) - Large-Vocabulary 3D Diffusion Model with Transformer [57.076986347047]
We introduce a diffusion-based feed-forward framework for synthesizing massive categories of real-world 3D objects with a single generative model.
We propose a novel triplane-based 3D-aware Diffusion model with TransFormer, DiffTF, for handling challenges via three aspects.
Experiments on ShapeNet and OmniObject3D convincingly demonstrate that a single DiffTF model achieves state-of-the-art large-vocabulary 3D object generation performance.
arXiv Detail & Related papers (2023-09-14T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.