RATLIP: Generative Adversarial CLIP Text-to-Image Synthesis Based on Recurrent Affine Transformations
- URL: http://arxiv.org/abs/2405.08114v1
- Date: Mon, 13 May 2024 18:49:18 GMT
- Title: RATLIP: Generative Adversarial CLIP Text-to-Image Synthesis Based on Recurrent Affine Transformations
- Authors: Chengde Lin, Xijun Lu, Guangxi Chen,
- Abstract summary: Conditional affine transformations (CAT) have been applied to different layers of GAN to control content synthesis in images.
We first model CAT and a recurrent neural network (RAT) to ensure that different layers can access global information.
We then introduce shuffle attention between RAT to mitigate the characteristic of information forgetting in recurrent neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing high-quality photorealistic images with textual descriptions as a condition is very challenging. Generative Adversarial Networks (GANs), the classical model for this task, frequently suffer from low consistency between image and text descriptions and insufficient richness in synthesized images. Recently, conditional affine transformations (CAT), such as conditional batch normalization and instance normalization, have been applied to different layers of GAN to control content synthesis in images. CAT is a multi-layer perceptron that independently predicts data based on batch statistics between neighboring layers, with global textual information unavailable to other layers. To address this issue, we first model CAT and a recurrent neural network (RAT) to ensure that different layers can access global information. We then introduce shuffle attention between RAT to mitigate the characteristic of information forgetting in recurrent neural networks. Moreover, both our generator and discriminator utilize the powerful pre-trained model, Clip, which has been extensively employed for establishing associations between text and images through the learning of multimodal representations in latent space. The discriminator utilizes CLIP's ability to comprehend complex scenes to accurately assess the quality of the generated images. Extensive experiments have been conducted on the CUB, Oxford, and CelebA-tiny datasets to demonstrate the superiority of the proposed model over current state-of-the-art models. The code is https://github.com/OxygenLu/RATLIP.
Related papers
- Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging.
This work presents a loss function that leverages the intrinsic multi-scale nature of the Gray-Level-Co-occurrence Matrix (GLCM)
Our approach also introduces a self-attention layer that dynamically aggregates the multi-scale texture information extracted from the images.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
We propose a new class of GAN discriminators for semantic image synthesis that generates highly realistic images.
Our model, which we dub DP-SIMS, achieves state-of-the-art results in terms of image quality and consistency with the input label maps on ADE-20K, COCO-Stuff, and Cityscapes.
arXiv Detail & Related papers (2023-12-20T09:39:19Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
We study the scaling laws of synthetic images generated by state of the art text-to-image models.
We observe that synthetic images demonstrate a scaling trend similar to, but slightly less effective than, real images in CLIP training.
arXiv Detail & Related papers (2023-12-07T18:59:59Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Conditional Generation of Synthetic Geospatial Images from Pixel-level
and Feature-level Inputs [0.0]
We present a conditional generative model, called VAE-Info-cGAN, for synthesizing semantically rich images simultaneously conditioned on a pixel-level condition (PLC) and a feature-level condition (FLC)
The proposed model can accurately generate various forms of macroscopic aggregates across different geographic locations while conditioned only on atemporal representation of the road network.
arXiv Detail & Related papers (2021-09-11T06:58:19Z) - Synthesize-It-Classifier: Learning a Generative Classifier through
RecurrentSelf-analysis [9.029985847202667]
We show the generative capability of an image classifier network by synthesizing high-resolution, photo-realistic, and diverse images at scale.
The overall methodology, called Synthesize-It-Classifier (STIC), does not require an explicit generator network to estimate the density of the data distribution.
We demonstrate an Attentive-STIC network that shows an iterative drawing of synthesized images on the ImageNet dataset.
arXiv Detail & Related papers (2021-03-26T02:00:29Z) - VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
Feature-level Geospatial Conditional Inputs [0.0]
We present a conditional generative model for synthesizing semantically rich images simultaneously conditioned on a pixellevel (PLC) and a featurelevel condition (FLC)
Experiments on a GPS dataset show that the proposed model can accurately generate various forms of macroscopic aggregates across different geographic locations.
arXiv Detail & Related papers (2020-12-08T03:46:19Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
We show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications.
The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks.
arXiv Detail & Related papers (2020-07-20T18:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.