Interpreting Latent Student Knowledge Representations in Programming Assignments
- URL: http://arxiv.org/abs/2405.08213v1
- Date: Mon, 13 May 2024 22:01:03 GMT
- Title: Interpreting Latent Student Knowledge Representations in Programming Assignments
- Authors: Nigel Fernandez, Andrew Lan,
- Abstract summary: We present an Information regularized Open-ended Item Response Theory model, which encourages latent student knowledge states to be interpretable.
In this paper, we show that InfoOIRT can both accurately generate student code and lead to interpretable student knowledge representations.
- Score: 2.184775414778289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence for education leverage generative large language models, including using them to predict open-ended student responses rather than their correctness only. However, the black-box nature of these models limits the interpretability of the learned student knowledge representations. In this paper, we conduct a first exploration into interpreting latent student knowledge representations by presenting InfoOIRT, an Information regularized Open-ended Item Response Theory model, which encourages the latent student knowledge states to be interpretable while being able to generate student-written code for open-ended programming questions. InfoOIRT maximizes the mutual information between a fixed subset of latent knowledge states enforced with simple prior distributions and generated student code, which encourages the model to learn disentangled representations of salient syntactic and semantic code features including syntactic styles, mastery of programming skills, and code structures. Through experiments on a real-world programming education dataset, we show that InfoOIRT can both accurately generate student code and lead to interpretable student knowledge representations.
Related papers
- Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration [42.95840730800478]
This paper presents a complete explainable system that interprets a set of data, abstracts the underlying features and describes them in a natural language of choice.
The system relies on two crucial stages: (i) identifying emerging properties from data and transforming them into abstract concepts, and (ii) converting these concepts into natural language.
arXiv Detail & Related papers (2025-02-13T11:49:48Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.
It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.
Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question.
Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT)
SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation.
arXiv Detail & Related papers (2024-07-01T12:44:52Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
We introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings.
Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience.
arXiv Detail & Related papers (2023-09-23T23:37:55Z) - How to Do Things with Deep Learning Code [0.0]
We draw attention to the means by which ordinary users might interact with, and even direct, the behavior of deep learning systems.
What is at stake is the possibility of achieving an informed sociotechnical consensus about the responsible applications of large language models.
arXiv Detail & Related papers (2023-04-19T03:46:12Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - JAKET: Joint Pre-training of Knowledge Graph and Language Understanding [73.43768772121985]
We propose a novel joint pre-training framework, JAKET, to model both the knowledge graph and language.
The knowledge module and language module provide essential information to mutually assist each other.
Our design enables the pre-trained model to easily adapt to unseen knowledge graphs in new domains.
arXiv Detail & Related papers (2020-10-02T05:53:36Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
We propose the Contextualized Language and Knowledge Embedding (CoLAKE)
CoLAKE jointly learns contextualized representation for both language and knowledge with the extended objective.
We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.
arXiv Detail & Related papers (2020-10-01T11:39:32Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.