Dual-Branch Network for Portrait Image Quality Assessment
- URL: http://arxiv.org/abs/2405.08555v1
- Date: Tue, 14 May 2024 12:43:43 GMT
- Title: Dual-Branch Network for Portrait Image Quality Assessment
- Authors: Wei Sun, Weixia Zhang, Yanwei Jiang, Haoning Wu, Zicheng Zhang, Jun Jia, Yingjie Zhou, Zhongpeng Ji, Xiongkuo Min, Weisi Lin, Guangtao Zhai,
- Abstract summary: We introduce a dual-branch network for portrait image quality assessment (PIQA)
We utilize two backbone networks (textiti.e., Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it.
We leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features.
- Score: 76.27716058987251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portrait images typically consist of a salient person against diverse backgrounds. With the development of mobile devices and image processing techniques, users can conveniently capture portrait images anytime and anywhere. However, the quality of these portraits may suffer from the degradation caused by unfavorable environmental conditions, subpar photography techniques, and inferior capturing devices. In this paper, we introduce a dual-branch network for portrait image quality assessment (PIQA), which can effectively address how the salient person and the background of a portrait image influence its visual quality. Specifically, we utilize two backbone networks (\textit{i.e.,} Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it. To enhance the quality-aware feature representation of the backbones, we pre-train them on the large-scale video quality assessment dataset LSVQ and the large-scale facial image quality assessment dataset GFIQA. Additionally, we leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features. Finally, we concatenate these features and regress them into quality scores via a multi-perception layer (MLP). We employ the fidelity loss to train the model via a learning-to-rank manner to mitigate inconsistencies in quality scores in the portrait image quality assessment dataset PIQ. Experimental results demonstrate that the proposed model achieves superior performance in the PIQ dataset, validating its effectiveness. The code is available at \url{https://github.com/sunwei925/DN-PIQA.git}.
Related papers
- Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Helping Visually Impaired People Take Better Quality Pictures [52.03016269364854]
We develop tools to help visually impaired users minimize occurrences of common technical distortions.
We also create a prototype feedback system that helps to guide users to mitigate quality issues.
arXiv Detail & Related papers (2023-05-14T04:37:53Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
We propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting.
We deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model.
Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases.
arXiv Detail & Related papers (2023-04-02T05:06:51Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
We propose a novel algorithm based on the Swin Transformer.
It aggregates information from both local and global features to better predict the quality.
It ranks 2nd in the no-reference track of NTIRE 2022 Perceptual Image Quality Assessment Challenge.
arXiv Detail & Related papers (2022-05-20T11:34:35Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
Current state-of-the-art IQA methods are based on convolutional neural networks (CNNs)
We design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios.
With a multi-scale image representation, our proposed method can capture image quality at different granularities.
arXiv Detail & Related papers (2021-08-12T23:36:22Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.