GN-SINDy: Greedy Sampling Neural Network in Sparse Identification of Nonlinear Partial Differential Equations
- URL: http://arxiv.org/abs/2405.08613v1
- Date: Tue, 14 May 2024 13:56:12 GMT
- Title: GN-SINDy: Greedy Sampling Neural Network in Sparse Identification of Nonlinear Partial Differential Equations
- Authors: Ali Forootani, Peter Benner,
- Abstract summary: We introduce the greedy sampling neural network in sparse identification of nonlinear partial differential equations (GN-SINDy)
GN-SINDy blends a greedy sampling method, the neural network, and the SINDy algorithm.
In the implementation phase, to show the effectiveness of GN-SINDy, we compare its results with DeePyMoD by using a Python package.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The sparse identification of nonlinear dynamical systems (SINDy) is a data-driven technique employed for uncovering and representing the fundamental dynamics of intricate systems based on observational data. However, a primary obstacle in the discovery of models for nonlinear partial differential equations (PDEs) lies in addressing the challenges posed by the curse of dimensionality and large datasets. Consequently, the strategic selection of the most informative samples within a given dataset plays a crucial role in reducing computational costs and enhancing the effectiveness of SINDy-based algorithms. To this aim, we employ a greedy sampling approach to the snapshot matrix of a PDE to obtain its valuable samples, which are suitable to train a deep neural network (DNN) in a SINDy framework. SINDy based algorithms often consist of a data collection unit, constructing a dictionary of basis functions, computing the time derivative, and solving a sparse identification problem which ends to regularised least squares minimization. In this paper, we extend the results of a SINDy based deep learning model discovery (DeePyMoD) approach by integrating greedy sampling technique in its data collection unit and new sparsity promoting algorithms in the least squares minimization unit. In this regard we introduce the greedy sampling neural network in sparse identification of nonlinear partial differential equations (GN-SINDy) which blends a greedy sampling method, the DNN, and the SINDy algorithm. In the implementation phase, to show the effectiveness of GN-SINDy, we compare its results with DeePyMoD by using a Python package that is prepared for this purpose on numerous PDE discovery
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A Robust SINDy Approach by Combining Neural Networks and an Integral
Form [8.950469063443332]
We propose a robust method to discover governing equations from noisy and scarce data.
We use neural networks to learn an implicit representation based on measurement data.
We obtain the derivative information required for SINDy using an automatic differentiation tool.
arXiv Detail & Related papers (2023-09-13T10:50:04Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
Simultaneous feature selection and non-linear function estimation are challenging in neural networks.
We propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings.
arXiv Detail & Related papers (2023-07-01T13:47:09Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - PySINDy: A comprehensive Python package for robust sparse system
identification [3.0531601852600834]
PySINDy is a Python package that provides tools for applying the sparse identification of nonlinear dynamics (SINDy) approach to data-driven model discovery.
In this major update to PySINDy, we implement several advanced features that enable the discovery of more general differential equations from noisy and limited data.
arXiv Detail & Related papers (2021-11-12T19:01:23Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Weak SINDy For Partial Differential Equations [0.0]
We extend our Weak SINDy (WSINDy) framework to the setting of partial differential equations (PDEs)
The elimination of pointwise derivative approximations via the weak form enables effective machine-precision recovery of model coefficients from noise-free data.
We demonstrate WSINDy's robustness, speed and accuracy on several challenging PDEs.
arXiv Detail & Related papers (2020-07-06T16:03:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.