Certifying Robustness of Graph Convolutional Networks for Node Perturbation with Polyhedra Abstract Interpretation
- URL: http://arxiv.org/abs/2405.08645v1
- Date: Tue, 14 May 2024 14:21:55 GMT
- Title: Certifying Robustness of Graph Convolutional Networks for Node Perturbation with Polyhedra Abstract Interpretation
- Authors: Boqi Chen, Kristóf Marussy, Oszkár Semeráth, Gunter Mussbacher, Dániel Varró,
- Abstract summary: Graph convolutional neural networks (GCNs) are powerful tools for learning graph-based knowledge representations from training data.
GCNs are vulnerable to small perturbations in the input graph, which makes them susceptible to input faults or adversarial attacks.
We propose an improved GCN robustness certification technique for node classification in the presence of node feature perturbations.
- Score: 3.0560105799516046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional neural networks (GCNs) are powerful tools for learning graph-based knowledge representations from training data. However, they are vulnerable to small perturbations in the input graph, which makes them susceptible to input faults or adversarial attacks. This poses a significant problem for GCNs intended to be used in critical applications, which need to provide certifiably robust services even in the presence of adversarial perturbations. We propose an improved GCN robustness certification technique for node classification in the presence of node feature perturbations. We introduce a novel polyhedra-based abstract interpretation approach to tackle specific challenges of graph data and provide tight upper and lower bounds for the robustness of the GCN. Experiments show that our approach simultaneously improves the tightness of robustness bounds as well as the runtime performance of certification. Moreover, our method can be used during training to further improve the robustness of GCNs.
Related papers
- Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey [0.0]
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges.
Oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions.
In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion.
arXiv Detail & Related papers (2024-11-26T13:38:12Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
Graph Neural Networks (GNNs) have emerged as the predominant paradigm for learning from graph-structured data.
GNNs face challenges such as lack of generalization and poor interpretability.
We introduce xAI-Drop, a novel topological-level dropping regularizer.
arXiv Detail & Related papers (2024-07-29T14:53:45Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Robust Subgraph Learning by Monitoring Early Training Representations [5.524804393257921]
Graph neural networks (GNNs) have attracted significant attention for their outstanding performance in graph learning and node classification tasks.
Their vulnerability to adversarial attacks, particularly through susceptible nodes, poses a challenge in decision-making.
We introduce the novel technique SHERD (Subgraph Learning Hale through Early Training Representation Distances) to address both performance and adversarial robustness in graph input.
arXiv Detail & Related papers (2024-03-14T22:25:37Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Graph Partner Neural Networks for Semi-Supervised Learning on Graphs [16.489177915147785]
Graph Convolutional Networks (GCNs) are powerful for processing graphstructured data and have achieved state-of-the-art performance in several tasks such as node classification, link prediction, and graph classification.
It is inevitable for deep GCNs to suffer from an over-smoothing issue that the representations of nodes will tend to be indistinguishable after repeated graph convolution operations.
We propose the Graph Partner Neural Network (GPNN) which incorporates a de- parameterized GCN and a parameter-sharing scheme.
arXiv Detail & Related papers (2021-10-18T10:56:56Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.