EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training
- URL: http://arxiv.org/abs/2405.08768v1
- Date: Tue, 14 May 2024 17:00:43 GMT
- Title: EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training
- Authors: Yulin Wang, Yang Yue, Rui Lu, Yizeng Han, Shiji Song, Gao Huang,
- Abstract summary: We reformulate the training curriculum as a soft-selection function.
We show that exposing the contents of natural images can be readily achieved by the intensity of data augmentation.
The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective.
- Score: 79.96741042766524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The superior performance of modern visual backbones usually comes with a costly training procedure. We contribute to this issue by generalizing the idea of curriculum learning beyond its original formulation, i.e., training models using easier-to-harder data. Specifically, we reformulate the training curriculum as a soft-selection function, which uncovers progressively more difficult patterns within each example during training, instead of performing easier-to-harder sample selection. Our work is inspired by an intriguing observation on the learning dynamics of visual backbones: during the earlier stages of training, the model predominantly learns to recognize some 'easier-to-learn' discriminative patterns in the data. These patterns, when observed through frequency and spatial domains, incorporate lower-frequency components, and the natural image contents without distortion or data augmentation. Motivated by these findings, we propose a curriculum where the model always leverages all the training data at every learning stage, yet the exposure to the 'easier-to-learn' patterns of each example is initiated first, with harder patterns gradually introduced as training progresses. To implement this idea in a computationally efficient way, we introduce a cropping operation in the Fourier spectrum of the inputs, enabling the model to learn from only the lower-frequency components. Then we show that exposing the contents of natural images can be readily achieved by modulating the intensity of data augmentation. Finally, we integrate these aspects and design curriculum schedules with tailored search algorithms. The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective. It reduces the training time of a wide variety of popular models by 1.5-3.0x on ImageNet-1K/22K without sacrificing accuracy. It also demonstrates efficacy in self-supervised learning (e.g., MAE).
Related papers
- From Prototypes to General Distributions: An Efficient Curriculum for Masked Image Modeling [11.634154932876719]
Masked Image Modeling has emerged as a powerful self-supervised learning paradigm for visual representation learning.
We propose a prototype-driven curriculum leagrning framework that structures the learning process to progress from prototypical examples to more complex variations in the dataset.
Our findings suggest that carefully controlling the order of training examples plays a crucial role in self-supervised visual learning.
arXiv Detail & Related papers (2024-11-16T03:21:06Z) - One-Shot Image Restoration [0.0]
Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution.
Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity.
arXiv Detail & Related papers (2024-04-26T14:03:23Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - EfficientTrain: Exploring Generalized Curriculum Learning for Training
Visual Backbones [80.662250618795]
This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers)
As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models by >1.5x on ImageNet-1K/22K without sacrificing accuracy.
arXiv Detail & Related papers (2022-11-17T17:38:55Z) - Training Dynamics for Text Summarization Models [45.62439188988816]
We analyze the training dynamics for generation models, focusing on news summarization.
Across different datasets (CNN/DM, XSum, MediaSum) and summary properties, we study what the model learns at different stages of its fine-tuning process.
We find that properties such as copy behavior are learnt earlier in the training process and these observations are robust across domains.
On the other hand, factual errors, such as hallucination of unsupported facts, are learnt in the later stages, and this behavior is more varied across domains.
arXiv Detail & Related papers (2021-10-15T21:13:41Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Learning to Sample the Most Useful Training Patches from Images [11.219920058662698]
We present a data-driven approach called PatchNet that learns to select the most useful patches from an image to construct a new training set.
We show that our simple idea automatically selects informative samples out from a large-scale dataset, leading to a surprising 2.35dB generalisation gain in terms of PSNR.
arXiv Detail & Related papers (2020-11-24T14:06:50Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.