Quantum computing with Qiskit
- URL: http://arxiv.org/abs/2405.08810v3
- Date: Wed, 19 Jun 2024 01:39:44 GMT
- Title: Quantum computing with Qiskit
- Authors: Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, Jay M. Gambetta,
- Abstract summary: We describe Qiskit, a software development kit for quantum information science.
We discuss the key design decisions that have shaped its development, and examine the software architecture and its core components.
- Score: 1.1469455926249006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe Qiskit, a software development kit for quantum information science. We discuss the key design decisions that have shaped its development, and examine the software architecture and its core components. We demonstrate an end-to-end workflow for solving a problem in condensed matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for example the representation and optimization of circuits at various abstraction levels, its scalability and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits. Lastly, we discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks, and the future ahead.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Quantum Serverless Paradigm and Application Development using the QFaaS Framework [17.398771276317575]
This chapter introduces the concept of serverless quantum computing with examples using QF.
The framework utilizes the serverless computing model to simplify quantum application development and deployment.
The chapter provides comprehensive documentation and guidelines for deploying and using QF.
arXiv Detail & Related papers (2024-07-03T06:12:55Z) - Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
This paper introduces a vision for Quantum Software Develop- ment lifecycle.
It proposes a hybrid full-stack iterative model that integrates quantum and classical computing.
arXiv Detail & Related papers (2024-03-18T11:18:33Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - QFaaS: A Serverless Function-as-a-Service Framework for Quantum
Computing [22.068803245816266]
We propose a Quantum Function-as-a-Service framework to advance quantum computing.
Our framework provides essential components of a quantum serverless platform to simplify the software development and adapt to the quantum cloud computing paradigm.
This paper proposes architectural design, principal components, the life cycle of hybrid quantum-classical function, operation workflow, and implementation of QF.
arXiv Detail & Related papers (2022-05-30T04:18:53Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Tools for Quantum Computing Based on Decision Diagrams [4.126108081031457]
We present a set of tools for quantum computing developed at the Johannes Kepler University (JKU) Linz and released under the MIT license.
We first review the concepts of how decision diagrams can be employed, e.g., for the simulation and verification of quantum circuits.
We then present a visualization tool for quantum decision diagrams, which allows users to explore the behavior of decision diagrams in the design tasks.
arXiv Detail & Related papers (2021-08-16T11:42:44Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.