Naturalistic Music Decoding from EEG Data via Latent Diffusion Models
- URL: http://arxiv.org/abs/2405.09062v5
- Date: Wed, 11 Sep 2024 11:36:34 GMT
- Title: Naturalistic Music Decoding from EEG Data via Latent Diffusion Models
- Authors: Emilian Postolache, Natalia Polouliakh, Hiroaki Kitano, Akima Connelly, Emanuele RodolĂ , Luca Cosmo, Taketo Akama,
- Abstract summary: This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data.
We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics.
- Score: 14.882764251306094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings. Unlike simpler music with limited timbres, such as MIDI-generated tunes or monophonic pieces, the focus here is on intricate music featuring a diverse array of instruments, voices, and effects, rich in harmonics and timbre. This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data, employing an end-to-end training approach directly on raw data without the need for manual pre-processing and channel selection. We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics. Our work contributes to the ongoing research in neural decoding and brain-computer interfaces, offering insights into the feasibility of using EEG data for complex auditory information reconstruction.
Related papers
- Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
This study introduces an innovative approach to the synthesis of Electroencephalogram (EEG) signals by integrating diffusion models with reinforcement learning.
Our methodology enhances the generation of EEG signals with detailed temporal and spectral features, enriching the authenticity and diversity of synthetic datasets.
arXiv Detail & Related papers (2024-09-14T07:22:31Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - Neuro-GPT: Towards A Foundation Model for EEG [0.04188114563181615]
We propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model.
Foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments.
Experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch.
arXiv Detail & Related papers (2023-11-07T07:07:18Z) - Transfer of knowledge among instruments in automatic music transcription [2.0305676256390934]
This work shows how to employ easily generated synthesized audio data produced by software synthesizers to train a universal model.
It is a good base for further transfer learning to quickly adapt transcription model for other instruments.
arXiv Detail & Related papers (2023-04-30T08:37:41Z) - An investigation of the reconstruction capacity of stacked convolutional
autoencoders for log-mel-spectrograms [2.3204178451683264]
In audio processing applications, the generation of expressive sounds based on high-level representations demonstrates a high demand.
Modern algorithms, such as neural networks, have inspired the development of expressive synthesizers based on musical instrument compression.
This study investigates the use of stacked convolutional autoencoders for the compression of time-frequency audio representations for a variety of instruments for a single pitch.
arXiv Detail & Related papers (2023-01-18T17:19:04Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
We generate complete and semantically consistent symbolic music scores from text descriptions.
We explore the efficacy of using publicly available checkpoints for natural language processing in the task of text-to-music generation.
Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity.
arXiv Detail & Related papers (2022-11-21T07:19:17Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - Learning to Denoise Historical Music [30.165194151843835]
We propose an audio-to-audio neural network model that learns to denoise old music recordings.
The network is trained with both reconstruction and adversarial objectives on a noisy music dataset.
Our results show that the proposed method is effective in removing noise, while preserving the quality and details of the original music.
arXiv Detail & Related papers (2020-08-05T10:05:44Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.