Spin Symmetry in Thermally-Assisted-Occupation Density Functional Theory
- URL: http://arxiv.org/abs/2405.09187v2
- Date: Wed, 29 May 2024 12:06:42 GMT
- Title: Spin Symmetry in Thermally-Assisted-Occupation Density Functional Theory
- Authors: Yu-Yang Wang, Jeng-Da Chai,
- Abstract summary: thermally-assisted-occupation density functional theory (TAO-DFT) has been shown to resolve the aforementioned spin-symmetry breaking.
To support this, TAO-DFT calculations with various fictitious temperatures are performed for the dissociation of H2, N2, He2, and Ne2 as well as the twisted ethylene.
- Score: 3.220144298715205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For electronic systems with multi-reference (MR) character, Kohn-Sham density functional theory (KS-DFT) with the conventional exchange-correlation (xc) energy functionals can lead to incorrect spin densities and related properties. For example, for H2 dissociation, the spin-restricted and spin-unrestricted solutions obtained with the same xc energy functional in KS-DFT can be distinctly different, yielding the unphysical spin-symmetry breaking effects in the spin-unrestricted solutions. Recently, thermally-assisted-occupation density functional theory (TAO-DFT) has been shown to resolve the aforementioned spin-symmetry breaking, when the fictitious temperature is properly chosen. In this work, a response theory based on TAO-DFT is developed to demonstrate that TAO-DFT with a sufficiently large fictitious temperature can always resolve the unphysical spin-symmetry breaking in MR systems. To further support this, TAO-DFT calculations with various fictitious temperatures are performed for the dissociation of H2, N2, He2, and Ne2 as well as the twisted ethylene.
Related papers
- Spin migration in density functional theory: energy, potential and density perspectives [0.0]
We study the behavior of the energy, Kohn-Sham orbitals, the KS potentials and the electron density, with respect to fractional spin, in different atomic systems.
Our results are instrumental for the assessment of the quality of existing approximations from a new perspective.
arXiv Detail & Related papers (2024-11-03T12:49:35Z) - Managing Temperature in Open Quantum Systems Strongly Coupled with Structured Environments [0.0]
We show how to reach either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials (T-TEDOPA) formalism in Hilbert space.
arXiv Detail & Related papers (2024-06-19T13:00:26Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - Variational principle to regularize machine-learned density functionals:
the non-interacting kinetic-energy functional [0.0]
We propose a new and efficient regularization method to train density functionals based on deep neural networks.
The method is tested on (effectively) one-dimensional systems, including the hydrogen chain, non-interacting electrons, and atoms of the first two periods.
For the atomic systems, the generalizability of the regularization method is demonstrated by training also an exchange--correlation functional.
arXiv Detail & Related papers (2023-06-30T12:07:26Z) - Simulating Spin-Orbit Coupling With Quasidegenerate N-Electron Valence
Perturbation Theory [77.34726150561087]
We present the first implementation of spin-orbit coupling effects in SO-QDNEVPT2.
The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides.
arXiv Detail & Related papers (2022-11-11T20:03:37Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Density-potential functional theory for fermions in one dimension [0.0]
orbital-free density-potential functional theory (DPFT) is a more flexible variant of Hohenberg-Kohn density functional theory.
DPFT is scalable, universally applicable in both position and momentum space, and allows kinetic and interaction energy to be approximated consistently.
The high quality of our results for Fermi gases in Morse potentials invites the use of DPFT for describing more exotic systems.
arXiv Detail & Related papers (2021-06-15T02:10:23Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
subsystem-DFT (sDFT) can dramatically reduce the computational cost of large-scale electronic structure calculations.
The key ingredients of sDFT are the nonadditive kinetic energy and exchange-correlation functionals which dominate it's accuracy.
eQE 2.0 delivers excellent interaction energies compared to conventional Kohn-Sham DFT and CCSD(T)
arXiv Detail & Related papers (2021-03-12T22:26:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Excitation Energies from Thermally-Assisted-Occupation Density
Functional Theory: Theory and Computational Implementation [0.0]
We develop time-dependent (TD) TAO-DFT, which is a time-dependent, linear-response theory for excited states.
TDTAO-DFT also yields zero singlet-triplet gap in the dissociation limit, for the ground singlet ($11Sigma_g+$) and the first triplet state ($13Sigma_u+$)
arXiv Detail & Related papers (2020-07-15T10:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.