Sensitivity Decouple Learning for Image Compression Artifacts Reduction
- URL: http://arxiv.org/abs/2405.09291v1
- Date: Wed, 15 May 2024 12:29:35 GMT
- Title: Sensitivity Decouple Learning for Image Compression Artifacts Reduction
- Authors: Li Ma, Yifan Zhao, Peixi Peng, Yonghong Tian,
- Abstract summary: We propose to decouple the intrinsic attributes into two complementary features for artifacts reduction.
In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features.
Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods.
- Score: 39.67836965306397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the benefit of deep learning techniques, recent researches have made significant progress in image compression artifacts reduction. Despite their improved performances, prevailing methods only focus on learning a mapping from the compressed image to the original one but ignore the intrinsic attributes of the given compressed images, which greatly harms the performance of downstream parsing tasks. Different from these methods, we propose to decouple the intrinsic attributes into two complementary features for artifacts reduction,ie, the compression-insensitive features to regularize the high-level semantic representations during training and the compression-sensitive features to be aware of the compression degree. To achieve this, we first employ adversarial training to regularize the compressed and original encoded features for retaining high-level semantics, and we then develop the compression quality-aware feature encoder for compression-sensitive features. Based on these dual complementary features, we propose a Dual Awareness Guidance Network (DAGN) to utilize these awareness features as transformation guidance during the decoding phase. In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features by fusing compression-insensitive features into the artifacts reduction baseline. Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods, and only requires 29.7 ms to process one image on BSD500. Besides, the experimental results on LIVE1 and LIU4K also demonstrate the efficiency, effectiveness, and superiority of the proposed method in terms of quantitative metrics, visual quality, and downstream machine vision tasks.
Related papers
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Machine Perception-Driven Image Compression: A Layered Generative
Approach [32.23554195427311]
layered generative image compression model is proposed to achieve high human vision-oriented image reconstructed quality.
Task-agnostic learning-based compression model is proposed, which effectively supports various compressed domain-based analytical tasks.
Joint optimization schedule is adopted to acquire best balance point among compression ratio, reconstructed image quality, and downstream perception performance.
arXiv Detail & Related papers (2023-04-14T02:12:38Z) - JND-Based Perceptual Optimization For Learned Image Compression [42.822121565430926]
We propose a JND-based perceptual quality loss for learned image compression schemes.
We show that the proposed method has led to better perceptual quality than the baseline model under the same bit rate.
arXiv Detail & Related papers (2023-02-25T14:49:09Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Metric Learning for Anti-Compression Facial Forgery Detection [32.33501564446107]
We propose a novel anti-compression facial forgery detection framework.
It learns a compression-insensitive embedding feature space utilizing both original and compressed forgeries.
arXiv Detail & Related papers (2021-03-15T14:11:14Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.