Progressive Depth Decoupling and Modulating for Flexible Depth Completion
- URL: http://arxiv.org/abs/2405.09342v1
- Date: Wed, 15 May 2024 13:45:33 GMT
- Title: Progressive Depth Decoupling and Modulating for Flexible Depth Completion
- Authors: Zhiwen Yang, Jiehua Zhang, Liang Li, Chenggang Yan, Yaoqi Sun, Haibing Yin,
- Abstract summary: Image-guided depth completion aims at generating a dense depth map from sparse LiDAR data and RGB image.
Recent methods have shown promising performance by reformulating it as a classification problem with two sub-tasks: depth discretization and probability prediction.
We propose a progressive depth decoupling and modulating network, which incrementally decouples the depth range into bins and adaptively generates multi-scale dense depth maps.
- Score: 28.693100885012008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-guided depth completion aims at generating a dense depth map from sparse LiDAR data and RGB image. Recent methods have shown promising performance by reformulating it as a classification problem with two sub-tasks: depth discretization and probability prediction. They divide the depth range into several discrete depth values as depth categories, serving as priors for scene depth distributions. However, previous depth discretization methods are easy to be impacted by depth distribution variations across different scenes, resulting in suboptimal scene depth distribution priors. To address the above problem, we propose a progressive depth decoupling and modulating network, which incrementally decouples the depth range into bins and adaptively generates multi-scale dense depth maps in multiple stages. Specifically, we first design a Bins Initializing Module (BIM) to construct the seed bins by exploring the depth distribution information within a sparse depth map, adapting variations of depth distribution. Then, we devise an incremental depth decoupling branch to progressively refine the depth distribution information from global to local. Meanwhile, an adaptive depth modulating branch is developed to progressively improve the probability representation from coarse-grained to fine-grained. And the bi-directional information interactions are proposed to strengthen the information interaction between those two branches (sub-tasks) for promoting information complementation in each branch. Further, we introduce a multi-scale supervision mechanism to learn the depth distribution information in latent features and enhance the adaptation capability across different scenes. Experimental results on public datasets demonstrate that our method outperforms the state-of-the-art methods. The code will be open-sourced at [this https URL](https://github.com/Cisse-away/PDDM).
Related papers
- Bilateral Propagation Network for Depth Completion [41.163328523175466]
Depth completion aims to derive a dense depth map from sparse depth measurements with a synchronized color image.
Current state-of-the-art (SOTA) methods are predominantly propagation-based, which work as an iterative refinement on the initial estimated dense depth.
We present a Bilateral Propagation Network (BP-Net), that propagates depth at the earliest stage to avoid directly convolving on sparse data.
arXiv Detail & Related papers (2024-03-17T16:48:46Z) - Transferring to Real-World Layouts: A Depth-aware Framework for Scene Adaptation [34.786268652516355]
Scene segmentation via unsupervised domain adaptation (UDA) enables the transfer of knowledge acquired from source synthetic data to real-world target data.
We propose a depth-aware framework to explicitly leverage depth estimation to mix the categories and facilitate the two complementary tasks, i.e., segmentation and depth learning.
In particular, the framework contains a Depth-guided Contextual Filter (DCF) forndata augmentation and a cross-task encoder for contextual learning.
arXiv Detail & Related papers (2023-11-21T15:39:21Z) - LRRU: Long-short Range Recurrent Updating Networks for Depth Completion [45.48580252300282]
Long-short Range Recurrent Updating (LRRU) network is proposed to accomplish depth completion more efficiently.
LRRU first roughly fills the sparse input to obtain an initial dense depth map, and then iteratively updates it through learned spatially-variant kernels.
Our initial depth map has coarse but complete scene depth information, which helps relieve the burden of directly regressing the dense depth from sparse ones.
arXiv Detail & Related papers (2023-10-13T09:04:52Z) - Non-parametric Depth Distribution Modelling based Depth Inference for
Multi-view Stereo [43.415242967722804]
Recent cost volume pyramid based deep neural networks have unlocked the potential of efficiently leveraging high-resolution images for depth inference from multi-view stereo.
In general, those approaches assume that the depth of each pixel follows a unimodal distribution.
We propose constructing the cost volume by non-parametric depth distribution modeling to handle pixels with unimodal and multi-modal distributions.
arXiv Detail & Related papers (2022-05-08T05:13:04Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
We quantify the interpretability of a deep MDE network by the depth selectivity of its hidden units.
We propose a method to train interpretable MDE deep networks without changing their original architectures.
Experimental results demonstrate that our method is able to enhance the interpretability of deep MDE networks.
arXiv Detail & Related papers (2021-08-11T16:43:45Z) - Depth Completion using Plane-Residual Representation [84.63079529738924]
We introduce a novel way of interpreting depth information with the closest depth plane label $p$ and a residual value $r$, as we call it, Plane-Residual (PR) representation.
By interpreting depth information in PR representation and using our corresponding depth completion network, we were able to acquire improved depth completion performance with faster computation.
arXiv Detail & Related papers (2021-04-15T10:17:53Z) - Boundary-induced and scene-aggregated network for monocular depth
prediction [20.358133522462513]
We propose the Boundary-induced and Scene-aggregated network (BS-Net) to predict the dense depth of a single RGB image.
Several experimental results on the NYUD v2 dataset and xffthe iBims-1 dataset illustrate the state-of-the-art performance of the proposed approach.
arXiv Detail & Related papers (2021-02-26T01:43:17Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
A novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching.
DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage.
We show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset.
arXiv Detail & Related papers (2020-12-10T10:33:57Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.