Diffusion-based Contrastive Learning for Sequential Recommendation
- URL: http://arxiv.org/abs/2405.09369v4
- Date: Sun, 20 Oct 2024 11:05:15 GMT
- Title: Diffusion-based Contrastive Learning for Sequential Recommendation
- Authors: Ziqiang Cui, Haolun Wu, Bowei He, Ji Cheng, Chen Ma,
- Abstract summary: We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.
CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.
We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
- Score: 6.3482831836623355
- License:
- Abstract: Contrastive learning has been effectively utilized to enhance the training of sequential recommendation models by leveraging informative self-supervised signals. Most existing approaches generate augmented views of the same user sequence through random augmentation and subsequently maximize their agreement in the representation space. However, these methods often neglect the rationality of the augmented samples. Due to significant uncertainty, random augmentation can disrupt the semantic information and interest evolution patterns inherent in the original user sequences. Moreover, pulling semantically inconsistent sequences closer in the representation space can render the user sequence embeddings insensitive to variations in user preferences, which contradicts the primary objective of sequential recommendation. To address these limitations, we propose the Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec. The core idea is to leverage context information to generate more reasonable augmented views. Specifically, CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence. These generated items are aligned with their respective context information and can effectively replace the corresponding original items, thereby generating a positive view of the original sequence. By considering two different augmentations of the same user sequence, we can construct a pair of positive samples for contrastive learning. To ensure representation cohesion, we train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model. Extensive experiments on five benchmark datasets demonstrate the advantages of our proposed method over existing baselines.
Related papers
- Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in sequential recommendation tasks.
This research introduces enhancements to the DiffuRec architecture to improve robustness and incorporates a cross-attention mechanism in the Approximator to better capture relevant user-item interactions.
arXiv Detail & Related papers (2024-10-25T09:39:05Z) - ContrastVAE: Contrastive Variational AutoEncoder for Sequential
Recommendation [58.02630582309427]
We propose to incorporate contrastive learning into the framework of Variational AutoEncoders.
We introduce ContrastELBO, a novel training objective that extends the conventional single-view ELBO to two-view case.
We also propose ContrastVAE, a two-branched VAE model with contrastive regularization as an embodiment of ContrastELBO for sequential recommendation.
arXiv Detail & Related papers (2022-08-27T03:35:00Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
We present a novel universal sequence representation learning approach, named UniSRec.
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way.
arXiv Detail & Related papers (2022-06-13T07:21:56Z) - Improving Contrastive Learning with Model Augmentation [123.05700988581806]
The sequential recommendation aims at predicting the next items in user behaviors, which can be solved by characterizing item relationships in sequences.
Due to the data sparsity and noise issues in sequences, a new self-supervised learning (SSL) paradigm is proposed to improve the performance.
arXiv Detail & Related papers (2022-03-25T06:12:58Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Modeling Sequences as Distributions with Uncertainty for Sequential
Recommendation [63.77513071533095]
Most existing sequential methods assume users are deterministic.
Item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests.
We propose a Distribution-based Transformer Sequential Recommendation (DT4SR) which injects uncertainties into sequential modeling.
arXiv Detail & Related papers (2021-06-11T04:35:21Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
We propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation.
We first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes framework, which enables our model to generate high-quality latent variables.
Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence.
arXiv Detail & Related papers (2021-03-19T09:01:14Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.