Towards a fully declarative neuro-symbolic language
- URL: http://arxiv.org/abs/2405.09521v2
- Date: Mon, 1 Jul 2024 09:58:55 GMT
- Title: Towards a fully declarative neuro-symbolic language
- Authors: Tilman Hinnerichs, Robin Manhaeve, Giuseppe Marra, Sebastijan Dumancic,
- Abstract summary: We propose and implement a general framework for fully declarative neural predicates.
We first show that the declarative extension preserves the learning and reasoning capabilities while being able to answer arbitrary queries.
- Score: 13.009339669097415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuro-symbolic systems (NeSy), which claim to combine the best of both learning and reasoning capabilities of artificial intelligence, are missing a core property of reasoning systems: Declarativeness. The lack of declarativeness is caused by the functional nature of neural predicates inherited from neural networks. We propose and implement a general framework for fully declarative neural predicates, which hence extends to fully declarative NeSy frameworks. We first show that the declarative extension preserves the learning and reasoning capabilities while being able to answer arbitrary queries while only being trained on a single query type.
Related papers
- NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization [17.49136753589057]
NeSyCoCo is a neuro-symbolic framework that generates symbolic representations and maps them to differentiable neural computations.
Our framework achieves state-of-the-art results on the ReaSCAN and CLEVR-CoGenT compositional generalization benchmarks.
arXiv Detail & Related papers (2024-12-20T05:48:58Z) - VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning [86.59849798539312]
We present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations.
We show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability.
arXiv Detail & Related papers (2024-10-30T16:11:05Z) - Formal Explanations for Neuro-Symbolic AI [28.358183683756028]
This paper proposes a formal approach to explaining the decisions of neuro-symbolic systems.
It first computes a formal explanation for the symbolic component of the system, which serves to identify a subset of the individual parts of neural information that needs to be explained.
This is followed by explaining only those individual neural inputs, independently of each other, which facilitates succinctness of hierarchical formal explanations.
arXiv Detail & Related papers (2024-10-18T07:08:31Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
We propose a list of desirable criteria for neuro symbolic systems and examine how some of the existing approaches address these criteria.
We then propose an extension to annotated generalized logic that allows for the creation of an equivalent neural architecture.
Unlike previous approaches that rely on continuous optimization for the training process, our framework is designed as a binarized neural network that uses discrete optimization.
arXiv Detail & Related papers (2023-02-23T17:39:46Z) - Neural-Symbolic Recursive Machine for Systematic Generalization [113.22455566135757]
We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS)
NSR integrates neural perception, syntactic parsing, and semantic reasoning.
We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities.
arXiv Detail & Related papers (2022-10-04T13:27:38Z) - NELLIE: A Neuro-Symbolic Inference Engine for Grounded, Compositional, and Explainable Reasoning [59.16962123636579]
This paper proposes a new take on Prolog-based inference engines.
We replace handcrafted rules with a combination of neural language modeling, guided generation, and semi dense retrieval.
Our implementation, NELLIE, is the first system to demonstrate fully interpretable, end-to-end grounded QA.
arXiv Detail & Related papers (2022-09-16T00:54:44Z) - Is Neuro-Symbolic AI Meeting its Promise in Natural Language Processing?
A Structured Review [2.064612766965483]
Advocates for Neuro-Symbolic AI (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI.
We conduct a structured review of studies implementing NeSy for NLP, challenges and future directions.
We aim to answer the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains.
arXiv Detail & Related papers (2022-02-24T17:13:33Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
We propose a semantic parsing and reasoning-based Neuro-Symbolic Question Answering(NSQA) system.
NSQA achieves state-of-the-art performance on QALD-9 and LC-QuAD 1.0.
arXiv Detail & Related papers (2020-12-03T05:17:55Z) - Neuron-based explanations of neural networks sacrifice completeness and interpretability [67.53271920386851]
We show that for AlexNet pretrained on ImageNet, neuron-based explanation methods sacrifice both completeness and interpretability.
We show the most important principal components provide more complete and interpretable explanations than the most important neurons.
Our findings suggest that explanation methods for networks like AlexNet should avoid using neurons as a basis for embeddings.
arXiv Detail & Related papers (2020-11-05T21:26:03Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z) - Compositional Generalization by Learning Analytical Expressions [87.15737632096378]
A memory-augmented neural model is connected with analytical expressions to achieve compositional generalization.
Experiments on the well-known benchmark SCAN demonstrate that our model seizes a great ability of compositional generalization.
arXiv Detail & Related papers (2020-06-18T15:50:57Z) - Conversational Neuro-Symbolic Commonsense Reasoning [10.894217510063086]
We present a neuro-symbolic theorem prover that extracts multi-hop reasoning chains.
We also present an interactive conversational framework built on our neuro-symbolic system.
arXiv Detail & Related papers (2020-06-17T17:28:38Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.