Characterizing MPS and PEPS Preparable via Measurement and Feedback
- URL: http://arxiv.org/abs/2405.09615v3
- Date: Tue, 08 Oct 2024 07:57:09 GMT
- Title: Characterizing MPS and PEPS Preparable via Measurement and Feedback
- Authors: Yifan Zhang, Sarang Gopalakrishnan, Georgios Styliaris,
- Abstract summary: Long-range entangled states pose significant challenges for near-term quantum devices.
It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth.
We detail the structure of matrix-product states (MPS) and projected entangled-pair states (PEPS) that can be prepared using MF.
- Score: 4.504359593338791
- License:
- Abstract: Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPS) and projected entangled-pair states (PEPS) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with abelian symmetry protected topological order are a restricted class of MF-preparable states. In two dimensions, we parameterize a subset of states with abelian topological order that are MF-preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation.
Related papers
- Finite-Depth Preparation of Tensor Network States from Measurement [0.0]
We explore criteria on the local tensors for enabling deterministic state preparation via a single round of measurements.
We use these criteria to construct families of measurement-preparable states in one and two dimensions.
Our protocol even allows one to engineer preparable quantum states with a range of desired correlation lengths and entanglement properties.
arXiv Detail & Related papers (2024-04-26T00:37:00Z) - Preparing matrix product states via fusion: constraints and extensions [0.0]
We focus on the deterministic preparation of matrix-product states (MPS) in constant depth.
We introduce a family of states that belong to interesting phases of matter protected by non-onsite symmetries.
It is shown constructively that these states can be prepared in constant depth using a broader class of measurement-assisted protocols.
arXiv Detail & Related papers (2024-04-25T06:42:01Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Tensor network formulation of symmetry protected topological phases in mixed states [0.36868085124383626]
We define and classify symmetry-protected topological (SPT) phases in mixed states based on the tensor network formulation of the density matrix.
We map strong injective matrix product density operators to a pure state in the doubled Hilbert space.
We extend our results to two-dimensional mixed states described by strong semi-injective tensor network density operators.
arXiv Detail & Related papers (2024-03-25T18:04:29Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Deterministic constant-depth preparation of the AKLT state on a quantum
processor using fusion measurements [0.2007262412327553]
The ground state of the spin-1 Affleck, Kennedy, Lieb and TasakiAKLT model is a paradigmatic example of both a matrix product state and a symmetry-protected topological phase.
Having a nonzero correlation length, the AKLT state cannot be exactly prepared by a constant-depth unitary circuit composed of local gates.
We demonstrate that this no-go limit can be evaded by augmenting a constant-depth circuit with fusion measurements.
arXiv Detail & Related papers (2022-10-31T17:58:01Z) - Measurement as a shortcut to long-range entangled quantum matter [0.0]
We introduce three classes of local adaptive circuits that enable low-depth preparation of long-range entangled quantum matter.
A large class of topological orders, including chiral topological order, can be prepared in constant depth or time.
A large class of CFT states and non-abelian topological orders with both solvable and non-solvable groups can be prepared in depth scaling logarithmically with system size.
arXiv Detail & Related papers (2022-06-27T18:00:01Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.