Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
- URL: http://arxiv.org/abs/2405.09800v1
- Date: Thu, 16 May 2024 04:13:17 GMT
- Title: Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
- Authors: Eslam Zaher, Maciej Trzaskowski, Quan Nguyen, Fred Roosta,
- Abstract summary: Integrated Gradients (IG) is a prevalent feature attribution method for black-box deep learning models.
We address two predominant challenges associated with IG: the generation of noisy feature visualizations and the vulnerability to adversarial attributional attacks.
Our approach involves an adaptation of path-based feature attribution, aligning the path of attribution more closely to the intrinsic geometry of the data manifold.
- Score: 8.107199775668942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we dive into the reliability concerns of Integrated Gradients (IG), a prevalent feature attribution method for black-box deep learning models. We particularly address two predominant challenges associated with IG: the generation of noisy feature visualizations for vision models and the vulnerability to adversarial attributional attacks. Our approach involves an adaptation of path-based feature attribution, aligning the path of attribution more closely to the intrinsic geometry of the data manifold. Our experiments utilise deep generative models applied to several real-world image datasets. They demonstrate that IG along the geodesics conforms to the curved geometry of the Riemannian data manifold, generating more perceptually intuitive explanations and, subsequently, substantially increasing robustness to targeted attributional attacks.
Related papers
- On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds [5.724027955589408]
This paper focuses on the hyperbolic manifold, a particularly suitable choice for modeling hierarchical relationships.
We propose augmenting the hyperbolic metric with a pullback metric to account for distortions introduced by theVM's nonlinear mapping.
Through various experiments, we demonstrate that geodesics on the pullback metric not only respect the geometry of the hyperbolic latent space but also align with the underlying data distribution.
arXiv Detail & Related papers (2024-10-28T09:13:00Z) - Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds [18.156807299614503]
We introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines manifold learning with generative modeling.
GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
arXiv Detail & Related papers (2024-10-16T17:53:26Z) - Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
Graph Structure Learning (GSL) plays an important role in boosting Graph Neural Networks (GNNs) with a refined graph.
GSL solutions usually focus on structure refinement with task-specific supervision (i.e., node classification) or overlook the inherent weakness of GNNs themselves.
We propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs.
arXiv Detail & Related papers (2024-01-23T14:06:08Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.