Analysis and Predictive Modeling of Solar Coronal Holes Using Computer Vision and ARIMA-LSTM Networks
- URL: http://arxiv.org/abs/2405.09802v3
- Date: Wed, 31 Jul 2024 08:28:48 GMT
- Title: Analysis and Predictive Modeling of Solar Coronal Holes Using Computer Vision and ARIMA-LSTM Networks
- Authors: Juyoung Yun, Jungmin Shin,
- Abstract summary: This study employs computer vision techniques to detect coronal hole regions and estimate their sizes.
We analyze trends in the area of coronal holes and predict their areas across various solar regions over a span of seven days.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the era of space exploration, coronal holes on the sun play a significant role due to their impact on satellites and aircraft through their open magnetic fields and increased solar wind emissions. This study employs computer vision techniques to detect coronal hole regions and estimate their sizes using imagery from the Solar Dynamics Observatory (SDO). Additionally, we utilize hybrid time series prediction model, specifically combination of Long Short-Term Memory (LSTM) networks and ARIMA, to analyze trends in the area of coronal holes and predict their areas across various solar regions over a span of seven days. By examining time series data, we aim to identify patterns in coronal hole behavior and understand their potential effects on space weather.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms.
By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares.
Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting.
arXiv Detail & Related papers (2024-05-23T16:17:16Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Predictive Modeling of Coronal Hole Areas Using Long Short-Term Memory Networks [0.0]
coronal holes, present on the sun, are distinguished by their open magnetic field lines and comparatively cooler temperatures.
This study harnesses computer vision to pinpoint the coronal hole regions and estimate their dimensions using imagery from the Solar Dynamics Observatory.
By evaluating the time series data concerning the area of the coronal holes, our research seeks to uncover patterns in the behavior of coronal holes.
arXiv Detail & Related papers (2023-01-17T07:22:54Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Simultaneous Multivariate Forecast of Space Weather Indices using Deep
Neural Network Ensembles [3.3935755618642367]
Solar radio flux and geomagnetic indices are important indicators of solar activity and its effects.
We propose a model based on long short-term memory neural networks to learn the distribution of time series data.
We show a 30-40% improvement of the root mean-square error while including solar image data with time series data.
arXiv Detail & Related papers (2021-12-16T17:42:49Z) - SCSS-Net: Solar Corona Structures Segmentation by Deep Learning [0.0]
Structures in the solar corona are the main drivers of space weather processes that might directly or indirectly affect the Earth.
We have developed a method for automatic segmentation of solar corona structures observed in EUV spectrum.
The outputs of the model can be then used for further statistical studies of connections between solar activity and the influence of space weather on Earth.
arXiv Detail & Related papers (2021-09-22T16:51:50Z) - Multi-Channel Auto-Calibration for the Atmospheric Imaging Assembly
using Machine Learning [20.247229396526855]
Current state-of-the-art calibration techniques rely on periodic sounding rockets.
We present an alternative calibration approach based on convolutional neural networks (CNNs)
Our results show that CNN-based models could comprehensively reproduce the sounding rocket experiments' outcomes within a reasonable degree of accuracy.
arXiv Detail & Related papers (2020-12-27T22:43:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.