Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images -- Nevus & Melanoma
- URL: http://arxiv.org/abs/2405.09851v1
- Date: Thu, 16 May 2024 07:00:44 GMT
- Title: Region of Interest Detection in Melanocytic Skin Tumor Whole Slide Images -- Nevus & Melanoma
- Authors: Yi Cui, Yao Li, Jayson R. Miedema, Sharon N. Edmiston, Sherif Farag, J. S. Marron, Nancy E. Thomas,
- Abstract summary: We developed an in-house deep-learning method to allow for classification, at the slide level, of nevi and melanomas.
The accuracy of the slide classification task was 92.3% and our model also performed well in terms of predicting the region of interest annotated by the pathologists.
- Score: 4.265489979736396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated region of interest detection in histopathological image analysis is a challenging and important topic with tremendous potential impact on clinical practice. The deep-learning methods used in computational pathology may help us to reduce costs and increase the speed and accuracy of cancer diagnosis. We started with the UNC Melanocytic Tumor Dataset cohort that contains 160 hematoxylin and eosin whole-slide images of primary melanomas (86) and nevi (74). We randomly assigned 80% (134) as a training set and built an in-house deep-learning method to allow for classification, at the slide level, of nevi and melanomas. The proposed method performed well on the other 20% (26) test dataset; the accuracy of the slide classification task was 92.3% and our model also performed well in terms of predicting the region of interest annotated by the pathologists, showing excellent performance of our model on melanocytic skin tumors. Even though we tested the experiments on the skin tumor dataset, our work could also be extended to other medical image detection problems to benefit the clinical evaluation and diagnosis of different tumors.
Related papers
- Deep Learning Algorithms for Early Diagnosis of Acute Lymphoblastic Leukemia [0.0]
Acute lymphoblastic leukemia (ALL) is a form of blood cancer that affects the white blood cells.
In this study, we propose a binary image classification model to assist in the diagnostic process of ALL.
arXiv Detail & Related papers (2024-07-14T15:35:39Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) is proposed to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss.
PLAN achieves 95% and 96% in patient-level sensitivity and specificity.
On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation.
arXiv Detail & Related papers (2023-07-17T06:21:45Z) - Region of Interest Detection in Melanocytic Skin Tumor Whole Slide
Images [4.091302612488775]
We propose a patch-based region of interest detection method for melanocytic skin tumor whole-slide images.
We work with a dataset that contains 165 primary melanomas and nevi Hematoxylin and Eosin whole-slide images.
The proposed method performs well on a hold-out test data set including five TCGA-SKCM slides.
arXiv Detail & Related papers (2022-10-29T01:12:08Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - A Multi-resolution Model for Histopathology Image Classification and
Localization with Multiple Instance Learning [9.36505887990307]
We propose a multi-resolution multiple instance learning model that leverages saliency maps to detect suspicious regions for fine-grained grade prediction.
The model is developed on a large-scale prostate biopsy dataset containing 20,229 slides from 830 patients.
The model achieved 92.7% accuracy, 81.8% Cohen's Kappa for benign, low grade (i.e. Grade group 1) and high grade (i.e. Grade group >= 2) prediction, an area under the receiver operating characteristic curve (AUROC) of 98.2% and an average precision (AP) of 97.4%.
arXiv Detail & Related papers (2020-11-05T06:42:39Z) - A Patient-Centric Dataset of Images and Metadata for Identifying
Melanomas Using Clinical Context [39.10946113351587]
The 2020 SIIM-ISIC Melanoma Classification challenge dataset was constructed to address the discrepancy between prior challenges and clinical practice.
The dataset represents 2,056 patients from three continents with an average of 16 lesions per patient.
arXiv Detail & Related papers (2020-08-07T20:22:23Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
Existing dermatologists for automated melanoma diagnosis are based on single-time point images of lesions.
We propose an automated framework for melanoma diagnosis using sequential dermoscopic images.
arXiv Detail & Related papers (2020-06-19T04:08:22Z) - AI outperformed every dermatologist: Improved dermoscopic melanoma
diagnosis through customizing batch logic and loss function in an optimized
Deep CNN architecture [2.572959153453185]
This study proposes a method using deep convolutional neural networks aiming to detect melanoma as a binary classification problem.
It involves 3 key features, namely customized batch logic, customized loss function and reformed fully connected layers.
The model outperformed all 157 dermatologists and achieved state-of-the-art performance with AUC at 94.4% with sensitivity of 85.0% and specificity of 95.0%.
arXiv Detail & Related papers (2020-03-05T13:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.