Rethinking Multi-User Semantic Communications with Deep Generative Models
- URL: http://arxiv.org/abs/2405.09866v1
- Date: Thu, 16 May 2024 07:43:15 GMT
- Title: Rethinking Multi-User Semantic Communications with Deep Generative Models
- Authors: Eleonora Grassucci, Jinho Choi, Jihong Park, Riccardo F. Gramaccioni, Giordano Cicchetti, Danilo Comminiello,
- Abstract summary: We develop a novel generative semantic communication framework tailored for multi-user scenarios.
Under this innovative perspective, OFDMA systems should not aim to transmit the largest part of information.
The thorough experimental evaluation shows the capabilities of the novel diffusion model and the effectiveness of the proposed framework.
- Score: 30.745379375963157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, novel communication strategies have emerged to face the challenges that the increased number of connected devices and the higher quality of transmitted information are posing. Among them, semantic communication obtained promising results especially when combined with state-of-the-art deep generative models, such as large language or diffusion models, able to regenerate content from extremely compressed semantic information. However, most of these approaches focus on single-user scenarios processing the received content at the receiver on top of conventional communication systems. In this paper, we propose to go beyond these methods by developing a novel generative semantic communication framework tailored for multi-user scenarios. This system assigns the channel to users knowing that the lost information can be filled in with a diffusion model at the receivers. Under this innovative perspective, OFDMA systems should not aim to transmit the largest part of information, but solely the bits necessary to the generative model to semantically regenerate the missing ones. The thorough experimental evaluation shows the capabilities of the novel diffusion model and the effectiveness of the proposed framework, leading towards a GenAI-based next generation of communications.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
This study introduces a Large Generative Model-assisted Talking-face Semantic Communication (LGM-TSC) system.
Generative Semantic Extractor (GSE) at the transmitter converts semantically sparse talking-face videos into texts with high information density.
Private Knowledge Base (KB) based on the Large Language Model (LLM) for semantic disambiguation and correction.
Generative Semantic Reconstructor (GSR) that utilizes BERT-VITS2 and SadTalker models to transform text back into a high-QoE talking-face video.
arXiv Detail & Related papers (2024-11-06T12:45:46Z) - A Review of Modern Recommender Systems Using Generative Models (Gen-RecSys) [57.30228361181045]
This survey connects key advancements in recommender systems using Generative Models (Gen-RecSys)
It covers: interaction-driven generative models; the use of large language models (LLM) and textual data for natural language recommendation; and the integration of multimodal models for generating and processing images/videos in RS.
Our work highlights necessary paradigms for evaluating the impact and harm of Gen-RecSys and identifies open challenges.
arXiv Detail & Related papers (2024-03-31T06:57:57Z) - Generative AI Meets Semantic Communication: Evolution and Revolution of
Communication Tasks [41.64537121421164]
We present a unified perspective of deep generative models in semantic communication.
We unveil their revolutionary role in future communication frameworks, enabling emerging applications and tasks.
arXiv Detail & Related papers (2024-01-10T09:56:36Z) - Diff-GO: Diffusion Goal-Oriented Communications to Achieve Ultra-High
Spectrum Efficiency [46.92279990929111]
This work presents an ultra-efficient communication design by utilizing generative AI-based on diffusion models.
We propose a new low-dimensional noise space for the training of diffusion models, which significantly reduces the communication overhead.
Our experimental results demonstrate that the proposed noise space and the diffusion-based generative model achieve ultra-high spectrum efficiency and accurate recovery of transmitted image signals.
arXiv Detail & Related papers (2023-11-13T17:52:44Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
This paper proposes a GAI-aided SemCom system with multi-model prompts for accurate content decoding.
In response to security concerns, we introduce the application of covert communications aided by a friendly jammer.
arXiv Detail & Related papers (2023-09-05T23:24:56Z) - Enhancing Semantic Communication with Deep Generative Models -- An
ICASSP Special Session Overview [25.314693624878053]
This ICASSP special session overview paper discloses the semantic communication challenges from the machine learning perspective.
It unveils how deep generative models will significantly enhance semantic communication frameworks.
It charts novel research pathways for the next generative semantic communication frameworks.
arXiv Detail & Related papers (2023-09-05T15:11:16Z) - Generative Semantic Communication: Diffusion Models Beyond Bit Recovery [19.088596386865106]
We propose a novel generative diffusion-guided framework for semantic communication.
We reduce bandwidth usage by sending highly-compressed semantic information only.
Our results show that objects, locations, and depths are still recognizable even in the presence of extremely noisy conditions.
arXiv Detail & Related papers (2023-06-07T10:36:36Z) - One-to-Many Semantic Communication Systems: Design, Implementation,
Performance Evaluation [35.21413988605204]
We propose a one-to-many semantic communication system called MR_DeepSC.
By leveraging semantic features for different users, a semantic recognizer is built to distinguish different users.
The proposed MR_DeepSC can achieve the best performance in terms of BLEU score.
arXiv Detail & Related papers (2022-09-20T02:48:34Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.