Generative Unlearning for Any Identity
- URL: http://arxiv.org/abs/2405.09879v1
- Date: Thu, 16 May 2024 08:00:55 GMT
- Title: Generative Unlearning for Any Identity
- Authors: Juwon Seo, Sung-Hoon Lee, Tae-Young Lee, Seungjun Moon, Gyeong-Moon Park,
- Abstract summary: In certain domains related to privacy issues, advanced generative models along with strong inversion methods can lead to potential misuses.
We propose an essential yet under-explored task called generative identity unlearning, which steers the model not to generate an image of a specific identity.
We propose a novel framework, Generative Unlearning for Any Identity (GUIDE), which prevents the reconstruction of a specific identity by unlearning the generator with only a single image.
- Score: 6.872154067622779
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in generative models trained on large-scale datasets have made it possible to synthesize high-quality samples across various domains. Moreover, the emergence of strong inversion networks enables not only a reconstruction of real-world images but also the modification of attributes through various editing methods. However, in certain domains related to privacy issues, e.g., human faces, advanced generative models along with strong inversion methods can lead to potential misuses. In this paper, we propose an essential yet under-explored task called generative identity unlearning, which steers the model not to generate an image of a specific identity. In the generative identity unlearning, we target the following objectives: (i) preventing the generation of images with a certain identity, and (ii) preserving the overall quality of the generative model. To satisfy these goals, we propose a novel framework, Generative Unlearning for Any Identity (GUIDE), which prevents the reconstruction of a specific identity by unlearning the generator with only a single image. GUIDE consists of two parts: (i) finding a target point for optimization that un-identifies the source latent code and (ii) novel loss functions that facilitate the unlearning procedure while less affecting the learned distribution. Our extensive experiments demonstrate that our proposed method achieves state-of-the-art performance in the generative machine unlearning task. The code is available at https://github.com/KHU-AGI/GUIDE.
Related papers
- Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis [7.099258248662009]
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence.
However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image.
We leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process.
arXiv Detail & Related papers (2024-09-27T19:31:04Z) - Synthesizing Efficient Data with Diffusion Models for Person Re-Identification Pre-Training [51.87027943520492]
We present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities.
Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities.
arXiv Detail & Related papers (2024-06-10T06:26:03Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Identity Encoder for Personalized Diffusion [57.1198884486401]
We propose an encoder-based approach for personalization.
We learn an identity encoder which can extract an identity representation from a set of reference images of a subject.
We show that our approach consistently outperforms existing fine-tuning based approach in both image generation and reconstruction.
arXiv Detail & Related papers (2023-04-14T23:32:24Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
This paper proposes a method for generating images of customized objects specified by users.
The method is based on a general framework that bypasses the lengthy optimization required by previous approaches.
We demonstrate through experiments that our proposed method is able to synthesize images with compelling output quality, appearance diversity, and object fidelity.
arXiv Detail & Related papers (2023-04-05T17:59:32Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - StyleID: Identity Disentanglement for Anonymizing Faces [4.048444203617942]
The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID.
As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement.
StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.
arXiv Detail & Related papers (2022-12-28T12:04:24Z) - T-Person-GAN: Text-to-Person Image Generation with Identity-Consistency
and Manifold Mix-Up [16.165889084870116]
We present an end-to-end approach to generate high-resolution person images conditioned on texts only.
We develop an effective generative model to produce person images with two novel mechanisms.
arXiv Detail & Related papers (2022-08-18T07:41:02Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z) - A 3D GAN for Improved Large-pose Facial Recognition [3.791440300377753]
Facial recognition using deep convolutional neural networks relies on the availability of large datasets of face images.
Recent studies have shown that current methods of disentangling pose from identity are inadequate.
In this work we incorporate a 3D morphable model into the generator of a GAN in order to learn a nonlinear texture model from in-the-wild images.
This allows generation of new, synthetic identities, and manipulation of pose, illumination and expression without compromising the identity.
arXiv Detail & Related papers (2020-12-18T22:41:15Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.