Non-Hermitian Topology in Hermitian Topological Matter
- URL: http://arxiv.org/abs/2405.10015v1
- Date: Thu, 16 May 2024 11:59:15 GMT
- Title: Non-Hermitian Topology in Hermitian Topological Matter
- Authors: Shu Hamanaka, Tsuneya Yoshida, Kohei Kawabata,
- Abstract summary: We show that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology.
We also find the emergence of hinge states within effective non-Hermitian Hamiltonians at surfaces of three-dimensional topological insulators.
Our work uncovers a hidden connection between Hermitian and non-Hermitian topology, and provides an approach to identifying non-Hermitian topology in quantum matter.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermiticity leads to distinctive topological phenomena absent in Hermitian systems. However, connection between such intrinsic non-Hermitian topology and Hermitian topology has remained largely elusive. Here, considering the bulk and boundary as an environment and system, we demonstrate that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology. We study the self-energy capturing the particle exchange between the bulk and boundary, and demonstrate that it detects Hermitian topology in the bulk and induces non-Hermitian topology at the boundary. As an illustrative example, we show the non-Hermitian topology and concomitant skin effect inherently embedded within chiral edge states of Chern insulators. We also find the emergence of hinge states within effective non-Hermitian Hamiltonians at surfaces of three-dimensional topological insulators. Furthermore, we comprehensively classify our correspondence across all the tenfold symmetry classes of topological insulators and superconductors. Our work uncovers a hidden connection between Hermitian and non-Hermitian topology, and provides an approach to identifying non-Hermitian topology in quantum matter.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Observation of the Knot Topology of Non-Hermitian Systems in a Single
Spin [12.88459291396421]
The non-Hermiticity of the system gives rise to distinct knot topology that has no Hermitian counterpart.
Our method paves the way for further exploration of the interplay among band braiding, eigenstate topology and symmetries in non-Hermitian quantum systems.
arXiv Detail & Related papers (2023-11-07T01:22:22Z) - Hermitian Topologies originating from non-Hermitian braidings [0.0]
We show that the complex energy bands of non-Hermitian systems braid in momentum space even in one dimension.
We derive an elegant identity that equates the linking number between the knots of braiding non-Hermitian bands and the zero-energy loop.
We construct typical topological phases with non-Hermitian braidings, which can be readily realized by artificial crystals.
arXiv Detail & Related papers (2022-12-28T08:08:58Z) - Non-Hermitian Topological Phases: Principles and Prospects [4.3012765978447565]
We present the key principles underpinning the features of non-Hermitian phases.
We discuss exceptional points, complex energy gaps and non-Hermitian symmetry classification.
We also examine the role of disorder, present the linear response framework, and analyze the Hall transport properties of non-Hermitian systems.
arXiv Detail & Related papers (2022-12-13T10:57:49Z) - Non-Hermitian topological phenomena: A review [0.0]
We review developments in non-Hermitian topological physics by focusing mainly on the boundary problem.
As well as the competition between non-Hermitian and topological boundary phenomena, we discuss the topological nature inherent in non-Hermiticity itself.
arXiv Detail & Related papers (2022-05-20T18:00:02Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Band topology of pseudo-Hermitian phases through tensor Berry
connections and quantum metric [6.033106259681307]
We show that several pseudo-Hermitian phases in two and three dimensions can be built by employing $q$-deformed matrices.
We analyze their topological bulk states through non-Hermitian generalizations of Abelian and non-Abelian tensor Berry connections and quantum metric.
arXiv Detail & Related papers (2021-06-17T16:51:13Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.